Crystal Creek

 Aggregates ExpansionFinal Draft Traffic Impact Analysis Report
Tullis, Inc. DBA Crystal Creek Aggregates
December 07, 2022
\rightarrow The Power of Commitment

REPORT SIGNATURE SHEET

This Traffic Impact Analysis Report for Tullis, Inc. DBA Crystal Creek Aggregates has been prepared under the direction of the following Professional Engineer. The Registered Civil Engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

Kathryn Savoy Kleinschmidt, PE Registered Civil Engineer

December 7, 2022

Date

Contents

1. Introduction 1
2. Background 3
2.1 Purpose and Need 4
2.2 Previous Traffic Studies 4
3. Existing Conditions 5
3.1 Study Area Roadway Network 5
3.2 Study Intersections and Segments 5
3.3 Data Collection 6
3.4 Existing Pedestrian, Bicycle, and Transit Conditions 9
3.5 Collision Analysis 9
3.6 Field Observations 10
4. Technical Analysis Methodology 11
4.1 Vehicle Miles Traveled (VMT) Methodologies 11
4.2 Intersection LOS and Vehicle Queuing Methodologies 11
4.3 Intersection LOS Thresholds 12
4.3.1 Shasta County LOS Guidelines 12
4.3.2 Caltrans LOS Guidelines 12
4.4 Technical Analysis Parameters 13
5. Opening Year 2022 Scenario 15
5.1 Opening Year 2022 Intersection Operations 15
5.2 Opening Year 2022 Roadway Segment Operations 18
6. Trip Generation and Trip Distribution 19
6.1 Project Description 19
6.2 Project Trip Generation 19
6.2.1 Daily Truck Trips 19
6.2.2 Daily Light Duty Vehicle Trips 19
6.2.3 Peak Hour Truck Trips 20
6.2.4 Peak Hour Light Vehicle Trips 20
6.3 Project Trip Distribution and Assignment 21
7. Opening Year 2022 Plus Project Scenario 24
7.1 Opening Year 2022 Plus Project Intersection Operations 26
7.2 Opening Year 2022 Plus Project Roadway Segment Operations 27
7.3 Project Site Access/Circulation 28
8. Cumulative Year 2042 Scenario 29
8.1 Cumulative Year 2042 Intersection Operations 31
8.2 Cumulative Year 2042 Roadway Segment Operations 32
9. Cumulative Year 2042 Plus Project Scenario 34
9.1 Cumulative Year 2042 Plus Project Intersection Operations 34
9.2 Cumulative Year 2042 Plus Project Roadway Segment Operations 37
10. Vehicle Miles Travelled (VMT) Analysis 38
10.1 Regulatory Framework 38
10.2 Screening Thresholds 38
11. Mitigation Measures 39
11.1 Bikeway Evaluation 39
11.2 State Route 299 and Iron Mountain Road Intersection Improvement 39
11.3 Fair Share Calculation 39
11.4 Additional Observations 40
12. Recommendation and Conclusions 42
Table Index
Table 3.1 Collisions Related to Project Area (2016-2020) 10
Table $4.1 \quad$ Technical Analysis Parameters 13
Table 4.2 Level of Service (LOS) Criteria for Intersections 14
Table 5.1 Opening year 2022 Scenario Intersection LOS 15
Table 5.2 Opening Year 2022 Scenario Vehicle 95 ${ }^{\text {th }}$ Percentile Queue 16
Table $5.3 \quad$ Opening Year 2022 Scenario - Two-Lane Segment Level of Service 18
Table 6.1 Project Trip Generation 21
Table 7.1 Opening Year 2022 Plus Project Scenario Intersection LOS 26
Table $7.2 \quad$ Opening Year 2022 Plus Project Scenario $95^{\text {th }}$ Percentile Queues 27
Table 7.3 Opening Year 2022 Plus Projects - Two-Lane Segment Level of Service 28
Table 8.1 Cumulative Year 2042 Scenario AM and PM Intersection LOS 31
Table $8.2 \quad$ Cumulative Year 2042 Scenario 95th Percentile Queues 32
Table $8.3 \quad$ Cumulative Year 2042 Scenario - Two-Lane Segment Level of Service 33
Table $9.1 \quad$ Cumulative Year 2042 Plus Project Scenario Intersection LOS 34
Table 9.2 Cumulative Year 2042 Plus Project Scenario 95th Percentile Queues 35
Table 9.3 Cumulative Year 2042 Plus Project Scenario - Two-Lane Segment LOS 37

Figure Index

Figure 1.1 Project Location Map 2
Figure 3.1 Existing Intersection Lane Geometries and Control 7
Figure 3.2 Existing AM and PM Peak Hour Volumes 8
Figure 5.1 Opening Year 2022 Scenario AM and PM Peak Hour Volumes 17
Figure 6.1 Project Trip Distribution 22
Figure 6.2 Project Trip Assignment 23

Figure 7.1 Opening Year 2022 Plus Project Scenario AM and PM Peak Hour Volumes
 25

Figure $8.1 \quad$ Cumulative Year 2042 Scenario AM and PM Peak Hour Volumes 30
Figure $9.1 \quad$ Cumulative Year 2042 Plus Project Scenario AM and PM Peak Hour Volumes 36
Figure 11.1 Proposed Intersection Improvements at Iron Mountain Road/SR 299 Intersection 41

Appendices

Appendix A Traffic Counts

Appendix B Traffic Analysis Reports

1. Introduction

This report has been prepared to present the results of a traffic impact analysis performed by GHD for the proposed expansion of the Crystal Creek Aggregates (CCA) facility in Shasta County, California. The proposed project would increase the annual rock product production from 250,000 Tons to 500,000 Tons. The Project is described in further detail in a subsequent section of this report. Figure 1.1 illustrates the location of the Project within Shasta County.

This report will evaluate the existing transportation setting and roadway operations at project intersections and roadways. Evaluation of project conditions, including project trip generation, distribution and traffic operation under plus project conditions are also included in the report.

The term "project", as used in this report, refers to the following development:

- Expansion of the mining operation from 250,000 tons to 500,000 tons.

Even though the tonnage of aggregates to be mined will increase under the proposed project, the operating hours of the existing mine will remain the same. This study will evaluate the AM and the PM peak hours roadway operations.

The following traffic scenarios are analyzed as a part of this report,

- Opening Year 2022
- Opening Year 2022 Plus Project
- Cumulative Year 2042
- Cumulative Year 2042 Plus Project

The "Cumulative Year 2042" condition represents future growth in the area in the next 20-years but does not include the expansion of Crystal Creek Aggregates.

Included in this report are analysis and discussion of the following items:

- Technical analysis parameters and methodologies.
- Existing study locations, data collection, and existing conditions assumptions.
- Project description including quantification of trip generation and trip distribution associated with the proposed project.
- Opening Year 2022 and Opening Year 2022 plus Project Conditions.
- Vehicle Miles Traveled (VMT) analysis related to the SB 743 and the trip characteristics of the proposed project associated with location, size, and screening criteria.
- Cumulative Year 2042 Analysis, including No Project and Plus Project Conditions.
- Impact Determination and Mitigation Measures including any bikeway improvements

Figure 1.1 shows the project study area.

2. Background

The existing Crystal Creek Aggregates (CCA) is located in Shasta County, California and operates as an agregate mining/reclamation facility and a concrete recycling center. The CCA facility was initially permitted in 1990 under Shasta County Use Permit UP-24-90 and Reclamation Plan 1-90. Subsequently, in 2008 General Plan Amendment 07-005, Zone Amendment 07-020, Use Permit Amendment, UP-07-020, and Reclamation Plan Amendment RP-07022 were approved. A California Environmental Quality Act (CEQA) Mitigated Negative Declaration, with findings as specifically set forth in Planning Commission Resolution Nos. 2008-066 and 2008-067 were also adopted, approving the various entitlements.

The CCA property is currently designated as a Mineral Resource (MR) and Interim Industrial Mineral Resource (I-IMR) General Plan land use classifications and zoned a Mineral Resource (MR) district. CCA operates under Shasta County Use Permit 07-020 (UP 07-020) that is valid until December 31, 2072 and contains the following requirements that impacts transportation:

- Removal of soil and overburden, blasting, extraction, crushing, screening, washing, stockpiling, loading, and offsite sale of sand, gravel and rock, as described in the description of the mining operation and reclamation plan* for the ± 110.69 acre area of five parcels.
*The reclamation plan was amended as follows:
- Amendment to Reclamation Plan (REC PL 1-90), May 27, 2008.
- Amended Mining and Reclamation Plan (REC PL 07-002), October 29, 2007.
- \quad Reclamation Plan Minor Modification (RP 07-002 M1), May 16, 2012.
- No rock, gravel, sand, or other earth materials shall be imported to or recycled on the site without prior approval from the County of Shasta's Planning Director or Planning Commission as appropriate.
- Truck traffic to and from the Project site shall be limited to a monthly average of 45 truck round-trips per day, with a maximum of 220 truck round-trips per day.
- The annual tonnage of processed rock product shall be limited to 250,000 tons.
- The hours of operation shall be from 6 am to 5 pm , Monday through Saturday during Pacific Standard Time.
- The hours of operation shall be from 6 am to 6 pm , Monday through Friday, and from 6 am to 5 pm on Saturdays, during Pacific Daylight Savings Time.
- No heavy equipment shall be moved to or from the site except during the permitted hours of operation, except during an emergency. Operator and employee personal passenger vehicles and office work are exempt from the limits of the hours of operation.
- All trucks hauling dirt, sand, soil or other loose material should be covered or should maintain the minimum required amount of freeboard in accordance with the requirements of the California Vehicle Code Section 23114.
- Pursuant to an agreement with the County, pay for extraordinary maintenance of Iron Mountain Road caused by the Project.
- All material transported off-site shall be either sufficiently watered or securely covered to prevent a public nuisance.
- The facility shall be provided with street address markers located with respect to the nearest roadway and to be clearly visible at all times.

The new project applicant, Tullis, Inc. DBA Crystal Creek Aggregates is proposing a similar Use Permit Amendment with annual rock product production increase from 250,000 tons to 500,000 tons with an increase in an overall project area of approximately 179.97 acres but with no asphalt concrete batch plant. The currently approved plant area of 53.38 acres and quarry area of 57.31 , which total 110.69 acres, will not be increased by the proposed project. However, the proposed project area will increase by 69.28 acres, which will be a buffer area. The total estimated amount proposed to be mined will increase from 15.92 million tons to 25.4 million tons over three phases. Extraction
for Phase 1, 2, and 3 is to be 4.84, 5.42 and 2.15 million cubic yards per phase, respectively. The estimated life of the mining operation will increase from the currently approved end of the Year 2072 by 27 years to the end of the Year 2099.

No additional project-related structures are proposed. Current operations for those associated with mining aggregate and the continuation of a Concrete Recycle Center Area to accommodate 50,000 cubic yards (CYs) are proposed to be continued. The existing Concrete Recycle Area location and operation for which an administrative permit was issued and subsequently reissued by the County due to the Carr Fire is proposed to be a permanent project component. The estimated 2.80 -acre area would be used for the storage of rubble and concrete byproducts obtained from regional demolition projects. The location of the material and topsoil stockpiles will also remain in their current general location, which will expand and contract as part of the mining operation.
Reclamation will occur, to the maximum extent feasible, concurrently with mining activity. Overburden and topsoil will be placed on each finished bench and vegetation planted within two years after reaching final grade, except for those portions which serve as haul routes or other functions necessary for the mining of future phases of the quarry. The Revegetation Plan was revised to make the mine more resistant to wildland fires.

2.1 Purpose and Need

The Project would expand the facility from an approved use permit area of ± 110.69 acres to a proposed total Project area of ± 179.97 acres. Additionally, the project would increase the total yearly aggregate sale from 250,000 tons to 500,000 tons. The total estimated amount proposed to be mined will increase from 15.92 million tons to 25.4 million tons over three phases.
The overall expansion and subsequent proposed uses and operational changes that were applicable to this traffic impact analysis were as follows:

- Increase rock product mining from 250,000 to 500,000 tons per year.
- Increase the December 31, 2072 "sunset" year to December 31, 2099.
- Number of full-time employees will increase from eight (8) to ten (10).

With the increase in rock product mining production and overall operations, a traffic study is required. This study will provide a determination of General Plan consistency.

This traffic analysis will evaluate the full buildout impacts and address the Shasta County General Plan Circulation Element policies for new developments to include:

C-6L: New development which may result in exceeding LOS E on existing facilities shall demonstrate that all feasible methods of reducing travel demand have been attempted to reach LOS C. New development shall not be approved unless traffic impacts are adequately mitigated. Such mitigation may take the form of, but not limited to, the following:

Provision of capacity improvements to the specific road link to be impacted, the transit system, or any reasonable combination.

Provision of demand reduction measures included as part of the project design or project operation or any feasible combination.

2.2 Previous Traffic Studies

In October 2005, Omni-Means, Ltd. conducted a traffic impact analysis for the expansion of CCA to 250,000 tons.
In February 2007, Omni-Means, Ltd. conducted a traffic impact analysis for the expansion of CCA to 500,000 tons. CCA did not move moved forward with the expansion at that time.

In August 2020, GHD Inc. conducted a traffic impact analysis for the expansion of CCA to 500,000 tons and the addition of asphalt concrete plant. CCA did not move moved forward with the expansion at that time.

3. Existing Conditions

In the Project area there are three main roadways that provide access, SR 299 (Eureka Way), Iron Mountain Road, and Keswick Dam Road. The other roadways in the study area are local roadways and therefore not described below.

3.1 Study Area Roadway Network

SR 299 is currently an undivided 2-lane highway in the project vicinity. The highway is under the jurisdiction of Caltrans. The highway operates as a high-speed rural highway. The posted speed limit is 55 MPH .
SR 299 begins in the City of Arcata at SR 101 and stretches easterly through Trinity, Shasta, Lassen, and Modoc Counties. SR 299 is an important interregional transportation facility. SR 299, in the vicinity of the Project, is an important route for recreation traffic and a commuter route serving the greater Redding area.
SR 299 in the project area is also called Eureka Way.
Iron Mountain Road is a 2-lane collector road, beginning at SR 299 approximately 2 miles west of the western limits of the City of Redding and ending several miles north of SR 299. The road is under the jurisdiction of the County of Shasta and serves as primary access to portions of Keswick Lake and the community of Keswick. The County has no reasonably foreseeable plans for roadway improvements of the Iron Mountain Road in the vicinity of the Project.

Keswick Dam Road is a 2-lane arterial road from Iron Mountain Road to Quartz Hill Road and a 4-lane arterial from Quartz Hill Road to where it terminates at Lake Boulevard. This road is under the jurisdiction of Shasta County and serves as primary access to Keswick Dam and Lake Keswick Estates. Currently, the road over the dam has a 20 -ton weight limit. The County has no reasonably foreseeable plans for improvement of the facility in the vicinity of the Project.

3.2 Study Intersections and Segments

The seven (7) intersections and one (1) roadway segment will be analyzed in the traffic analysis. The study intersections are as follows:

1. Iron Mountain Road / State Route 299 (Eureka Way)
2. Iron Mountain Road / Middle Creek Road
3. Iron Mountain Road / Crystal Creek Aggregates (CCA) Driveway
4. Iron Mountain Road / Stubbs Lane
5. Iron Mountain Road / Lumber Manufacture 4-Leg Driveway
6. Iron Mountain Road / Ball Mill Road
7. Iron Mountain Road / Keswick Dam Road

The study roadway segment is as follows:

1. Iron Mountain Road, north of SR 299

Due to Keswick Dam Road having a load limit of 20 tons and a fully loaded truck of aggregate is 40 tons, this possible alternative route was deemed infeasible and removed as a study segment.

3.3 Data Collection

In late July and throughout August 2018, the Carr fire burned 230,000 acres and 1,079 residences in Shasta and Trinity counties. Along the Iron Mountain Road corridor, over 200 homes were destroyed including nearly every residence in the community of Keswick. Based on this area having recent reductions to the vehicular traffic with the Carr fire, historical and existing traffic counts were examined.

Traffic counts were collected at the study intersections in November 2018, February 2019, and October 2019.
At the time of the counts in November 2018, the following Carr fire disaster response activities were underway:

- CalRecycle was fully mobilized performing debris removal and erosion control.
- Tullis Inc., under contract to Caltrans, was performing vegetation removal and erosion control along SR 299.
- Utility companies were reconstructing their infrastructure.
- Staging of materials, equipment and personnel were underway at CCA.

GHD compared the November 2018 traffic counts to historical traffic counts from previous studies for the site (2005 and 2007 studies). Based on these historical counts, traffic taken in 2005 were higher than 2018. This is due to the fire and subsequent loss of residential homes in Keswick.

Weekday AM and PM peak hour intersection turn movement traffic counts were collected by National Data \& Surveying Services (NDS) collected counts on February 20, 2019 and October 22, 2019. October 2019 counts showed higher amount of traffic at the project intersections compared to February 2019 counts. Therefore, the October 2019 traffic counts were utilized for the traffic operational analysis.

Study intersections were analyzed during the weekday AM and PM peak hour period. The AM and PM peak hour is defined as the highest continuous hour of peak traffic flow counted between 7:00 AM to 9:00 AM and 4:00 PM and 6:00 PM, respectively, under typical weekday conditions.

Counts were taken when all local schools were in session. During the count days, no special events were taking place and the weather was clear. Existing intersection lane geometries and intersection volumes are shown in Figure 3.1 and Figure 3.2.

In comparing the recent traffic counts in 2019 to 2018 traffic counts, the 2019 counts are less than the 2018 traffic counts. This is attributed to the additional activities during the emergency disaster response period in 2018.

All traffic counts were taken before any COVID-19 related impact to travel patterns.
Roadway segment counts were also collected for 24 -hour periods at the Iron Mountain Road study segment during three consecutive weekdays in October 2019. Results of the average study segment count is as follows:

1. Iron Mountain Road, north of SR 299

Average daily volume 1,321 vehicles (both directions), average AM peak hour volume 119 vehicles, average PM peak hour volume 122 vehicles

All traffic counts are included in Appendix A Traffic Counts of this report.

CRYSTAL CREEK AGGREGATES EXPANSION TRAFFIC IMPACT ANALYSIS REPORT EXISTING INTERSECTION LANE GEOMETRIES AND CONTROL

Project No. 12560517 Report No. RPT001 Date 4/28/2022

Project No. 12560517 Report No. RPT001 Date 4/28/2022

CRYSTAL CREEK AGGREGATES EXPANSION
TRAFFIC IMPACT ANALYSIS REPORT
EXISTING AM AND PM PEAK HOUR VOLUMES

3.4 Existing Pedestrian, Bicycle, and Transit Conditions

The existing pedestrian, bicycle, and transit facilities were examined within the study area. Since the roadways in the study area are rural roadways, there is no curb or sidewalks present. Rather there are shoulders with open ditch drainage. The roadway shoulders provide an area for pedestrian and bicycle traffic. In addition, there are no crosswalks markings on any study roadways.

Per the Shasta County General Plan, SR 299 is a bicycle planning corridor. Near Iron Mountain Road, SR 299 has varying shoulder widths. For the eastbound direction on SR 299, there are shoulders approximately 12-13' wide and in the westbound direction they ranged from 4-9' wide. On Iron Mountain Road at Middle Creek Road west leg, Middle Creek Trail crosses Iron Mountain Road (with no markings). The Middle Creek Trail is a paved bicycle and pedestrian trail with centerline striping that originates on the east side just north of SR 299 on Middle Creek Road and continues southeast to connect with the Sacramento River Trail. The Sacramento River Trail then continues east to Redding and more specifically Lake Redding.

Bus routes for Shasta Union High School District transportation in the region was reviewed for the study. Currently there are no school's bus services to the project area.

In addition, there are no transit facilities in the study area.

3.5 Collision Analysis

Collisions data for unincorporated Shasta County roadways and Caltrans roadways were collected from Statewide Integrated Traffic Records System (SWITRS) between January 1, 2016 and December 31, 2020. All collisions were analyzed and sorted by location.

In total, 17 collisions were identified to be within the study area. Table 3.1 shows the number of collisions at study intersections and segments by severity, type, and year.

As seen in Table 3.1, the intersections of Iron Mountain Road / SR 299, Iron Mountain Road / Ball Mill Road, and Iron Mountain Road / Keswick Dam Road all have at least one (1) collision in the last five (5) years.
The intersection of Iron Mountain Road / SR 299 experienced four (4) collisions in the last five (5) years. Most common type of collision at this intersection is a broadside collision type.

There were no pedestrian or bicycle collisions at the study intersections. None of the collisions resulted in a severe injury or fatality.

The roadway segment on Iron Mountain Road (from SR 299 to Keswick Dam Road) was analyzed. There were no bicycle or pedestrian collisions but one (1) severe injury collision occurred in 2016 on Iron Mountain Road. It was a single vehicle collision 790 feet north of SR 299. The vehicle was an overturned collision due to improper turning.

Location		-							先			$\begin{aligned} & \text { O} \\ & 0 \\ & =0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						-
Intersection																		
1. Iron Mountain Road / SR 299	4			2			2			2	1		1	1				1
2. Iron Mountain Rd/ Middle Creek Rd	0																	
3. Iron Mountain Rd/ CCA Dwy	0																	
4. Iron Mountain Rd / Stubbs Lane	0																	
5. Iron Mountain Rd/ Lumber Manufacture Dwy	0																	
6. Iron Mountain Rd/ Ball Mill Rd	1						1			,				1				
7. Iron Mountain Rd/ Keswick Dam Rd	1			1							1							
Segment																		
Iron Mountain Rd from Keswick Dam Rd to SR 299	11		1			1	9				6	5		5				2

Traffic volumes on these roadways are currently lower than historical averages due to the 2018 Carr Fire. Homes and other traffic generators were destroyed during the fire and are expected to rebuild in the future. Even though collisions are typically random events, the addition of the project trips are not anticipated to increase the collision rates of these roadways since the project is not anticipated to add a significant number of trips to the study locations.

3.6 Field Observations

A preliminary traffic engineering field review was conducted on December 12, 2018. The following information was observed during the field visit:

- No approach metal beam guard railings on Middle Creek Bridge:
- Approach guard railing flares would be typical for new construction under current standards.
- Existing driveways and trails make it impractical to add guard railing flares.
- Shoulder drop off conditions exist in isolated locations along Iron Mountain Road.
- These conditions typically are the result of commercial vehicle traffic off-tracking and lack of shoulder maintenance. It should be noted that as a condition of Approval \#53 of the Existing Use Permit CCA pays the County "for extraordinary maintenance of Iron Mountain Road caused by traffic from this operation. This will include annual maintenance as well as the possible resurfacing of the road at a later time."

4. Technical Analysis Methodology

4.1 Vehicle Miles Traveled (VMT) Methodologies

SB 743 was signed into law in 2013, with the intent to better align CEQA practices with statewide sustainability goals related to efficient land use, greater multimodal choices, and greenhouse gas reductions. The provisions of SB 743 became effective Statewide on July 1, 2020. Under SB 743, automobile delay, traditionally measured as level of service (LOS) will no longer be considered an environmental transportation impact under CEQA. Instead, impacts will be determined by changes to VMT. VMT measures the number and length of vehicle trips made on a daily basis. VMT is a useful indicator of overall land use and transportation efficiency, where the most efficient system is one that minimizes VMT by encouraging shorter vehicle trip lengths, more walking and biking, or increased carpooling and transit.

Caltrans recently published an update for their Transportation Impact Study Guidelines (TISG, May 20, 2020). The Caltrans' TISG is intended for use in preparing a transportation impact analysis of land use projects or plans that may impact of affect the State Highway System and replaces the prior 2002 Guidelines. The TISG heavily references OPR's Technical Advisory as a basis for its guidance. The TISG recommends use of OPR's recommended thresholds for land use projects (15% below existing city or regional VMT per capita or per employee). As each lead agency develops and adopts its own VMT thresholds for land use projects, Caltrans will review them for consistency with OPR's recommendations, and with the state's greenhouse gas emissions reduction targets and California Air Resources Board Scoping Plan. Caltrans identifies possible mitigation framework for projects found to have a potentially significant impact on VMT. These include the following programmatic measures:

- Impact fee programs that contain a demonstrated nexus and proportionality between a fee and capital projects that result in VMT reduction;
- VMT mitigation bank programs; and,
- VMT mitigation exchange programs.

Caltrans also indicates that additional future guidance will include the basis for requesting transportation impact analysis that is not based on VMT, but rather a simplified safety analysis approach that reduces risk to all road users and focuses on multimodal analysis as well as access management issues.
Understanding Caltrans requirements for VMT, GHD evaluated the proposed project in light of the TISG guidelines and its likely VMT impact. Based on TISG guidelines, it was determined a VMT analysis will not be required for this proposed project due to the number of trips generated by the project. Further details of VMT analysis are discussed in subsequent section of this report.
Shasta County is currently in the process of developing its own VMT impact threshold. OPR guidance which are consistent with TISG guidelines mentioned above, is appropriate for measuring VMT for Shasta County in the meantime.

4.2 Intersection LOS and Vehicle Queuing Methodologies

Intersection level of services (LOS) have been calculated for all control types using the methods documented in the Transportation Research Board's publication Highway Capacity Manual 2016 (HCM 6). LOS determinations are presented on a letter grade scale from "A" to "F", whereby LOS "A" represents "free-flow" conditions and LOS "F" represents over capacity conditions.

The HCS 7 software program was used to implement the HCM 6 methodology for the study roadway segment. Two lane segment analysis methodology was used for Class II highways for the segment on Iron Mountain Road.

Intersection LOS is calculated for all control types using Synchro 10.0 (Trafficware). Al study intersections are TwoWay Stop Control (TWSC). For TWSC intersections vehicle delay represents the worst delay for the minor-street stopsign controlled movement(s). Table 4.1 presents the LOS definitions for different types of intersection controls.

For vehicle queueing, the Synchro Suite microsimulation component, SimTraffic, was used to simulate queuing conditions. The average of 5 microsimulation runs was used in capturing the average $95^{\text {th }}$ percentile queues

Vehicle queues are considered acceptable within this report if the queues are accommodated within the available storage for left- and right-turn lanes. When thru-movement queues are longer than an adjacent left- or right-turn lane pocket, the pocket length should be extended to allow access where feasible.

4.3 Intersection LOS Thresholds

Of the seven study intersections, six study intersections are under the County of Shasta jurisdiction and one study intersections is under Caltrans jurisdiction (SR 299 / Iron Mountain Road).

4.3.1 Shasta County LOS Guidelines

Per the County of Shasta's General Plan, Circulation Element, as amended September 2004, the following policy is provided for new developments.

C-61 New development which may result in exceeding LOS E on existing facilities shall demonstrate that all feasible methods of reducing travel demand have been attempted to reach LOS C. New development shall not be approved unless traffic impacts are adequately mitigated. Such mitigation may take the form of, but not limited to, the following.

- Provision of capacity improvements to the specific road link to be impacted, the transit system, or any reasonable combination;
- Provision of demand reduction measures included as part of the project design or project operation or any feasible combination.

The County of Shasta uses LOS "E" as the threshold for requiring new development to mitigate its impacts.

4.3.2 Caltrans LOS Guidelines

The Caltrans guide, Preparation of Traffic Impact Studies (TIS) (December 2002), states the following:
Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and LOS "D" on State highway facilities, however, Caltrans acknowledges that this may not be always feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS.

Consistent with Caltrans practice, this study will consider LOS "C" as the standard threshold acceptable operations for any intersection under Caltrans jurisdiction

With the implementation of SB743, Caltrans has updated their 2002 TIS Guide with VMT analysis. This guide is the Focused Transportation Impact Study Guide (May 20, 2020) (TISG) and intended to replace the 2002 TIS Guide.

Consistent with Caltrans and County practices, this study will consider LOS "C" and LOS "E" as the significance threshold for study intersections.

4.4 Technical Analysis Parameters

The traffic study provides a "preliminary operational level" evaluation of traffic operating conditions at the study intersections. The evaluation incorporated appropriate heavy vehicle adjustment percentages, peak hour factors, lane geometries, etc. Table 4.2 summarizes the intersection technical analysis parameters used within the study. Since the Existing Conditions (2022) coincides with the Opening Year (2022), there was no separate analysis needed for Existing Conditions.

Table $4.1 \quad$ Technical Analysis Parameters

Technical Parameters	Assumption
	PHF of $0.87-0.95$ in AM; PHF of 0.77-0.94 in PM peak hours
in Opening Year 2022 and Opening year 2022 Plus Project	
1. Intersection Peak Hour Factor	scenarios
(PHF)	PHF of 0.92 or lower (per traffic count) in AM and PM peak
	hours for Cumulative Year 2042 and Cumulative Year 2042 Plus Project Scenarios
Minimum of 2\%. Heavy vehicle factors are utilized per individual 2. Intersection Heavy Vehicle movements and adjusted for additional trucks with Plus Project Scenarios. See Appendix A Traffic Counts for detailed traffic counts.	

LOS	Type of Flow	Delay	Maneuverability	Stopped Delay / Vehicle (sec)	
				Signalized	Unsignalized / AWSC, TWSC, and Roundabouts
A	Stable Flow	Very slight delay. Progression is very favorable, with most vehicles arriving during the green phase not stopping at all.	Turning movements are easily made, and nearly all drivers find freedom of operation.	≤ 10.0	≤ 10.0
B	Stable Flow	Good progression and/or short cycle lengths. More vehicles stop than LOS A, causing higher levels of average delay.	Vehicle platoons are formed. Many drivers begin to feel somewhat restricted within groups of vehicles.	>10 and ≤ 20.0	>10 and ≤ 15.0
C	Stable Flow	Higher delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.	Back-ups may develop behind turning vehicles. Most drivers feel somewhat restricted.	>20 and ≤ 35.0	>15 and ≤ 25.0
D	Approaching Unstable Flow	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable	Maneuverability is severely limited during short periods due to temporary back-ups.	>35 and ≤ 55.0	>25 and ≤ 35.0
E	Unstable Flow	Generally considered to be the limit of acceptable delay. Indicative of poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.	There are typically long queues of vehicles waiting upstream of the intersection.	>55 and ≤ 80.0	>35 and ≤ 50.0
F	Forced Flow	Generally considered to be unacceptable to most drivers. Often occurs with over saturation. May also occur at high volume-to-capacity ratios. There are many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors.	Jammed conditions. Back-ups from other locations restrict or prevent movement. Volumes may vary widely, depending principally on the downstream back-up conditions.	>80.0	>50.0

5. Opening Year 2022 Scenario

The proposed project is expected to be operational in the later part of the Year 2022. Opening Year 2022 scenario represents traffic conditions at the time of project opening as well as Existing Conditions. Opening Year 2022 traffic volumes were generated by adding 3 -years of 1% per year growth to the existing traffic volumes. The growth rate of 1% per year is consistent with growth in traffic in the area as shown in the Shasta County Regional Activity-Based Travel Model (SHASTASIM 1.2) Year 2020 and 2040 scenarios. The growth rate is consistent with Cumulative Year 2042 scenario and is discussed in further detail in Section 8 of this report.

5.1 Opening Year 2022 Intersection Operations

Table 5.1 summarizes the intersection operations during the weekday AM and PM peak hour in Opening Year 2022 Scenario. All study intersections are controlled by a stop sign on the minor street approach. With this traffic control and limited side street traffic, all intersections operate at LOS A or LOS B. All traffic analysis reports are included in Appendix B Traffic Analysis Reports. Delay and level of service for TWSC intersections are reported for the worst minor street movement, or the major street left turn movements.

As presented in Table 5.1, all study intersections currently operate at or above the threshold LOS for the Opening Year 2022 Scenario:

Table 5.1 Opening year 2022 Scenario Intersection LOS

	Intersection	Peak Hour	$\begin{gathered} \text { Target } \\ \text { LOS } \end{gathered}$	Opening Year 2022						
				Control	Delay	LOS				
1	Iron Mountain Road / SR 299	AM	C	TWSC ${ }^{1}$	13.8	B				
					15.7	C				
2	Iron Mountain Road / Middle Creek Road East Leg	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
3	Iron Mountain Road / CCA South Driveway	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
4	Iron Mountain Road / Stubbs Lane	AM	E	TWSC ${ }^{1}$	9.2	A				
		PM			9.2	A				
5	Iron Mountain Road / Lumber Manufacture Driveway	AM	E	TWSC ${ }^{1}$	11.1	B				
		PM			11.3	B				
6	Iron Mountain Road / Ball Mill Road	AM	E	TWSC ${ }^{1}$	9.7	A				
		PM			9.5	A				
7	Iron Mountain Road / Keswick Dam Road	AM	E	TWSC ${ }^{1}$	9.2	A				
		PM			9.2	A				
${ }^{1}$ Analyzed using HCM 6 methodology for Tw o-Way Stop Controlled (TWSC) intersection. Delay presented for w orst of minor street movement or the major street left turn movement										

Opening Year 2022 intersection queuing analysis forecasts vehicle queuing at the study intersections. Table 5.2 presents the $95^{\text {th }}$ percentile queues for the weekday AM and PM peak hours at the study intersections. With the heavy vehicle percentages entered by movement based on existing traffic counts, the vehicle queues are adequate in Opening Year 2022 Scenario. All queuing reports are included in Appendix B Traffic Analysis Reports.

Table 5.2 Opening Year 2022 Scenario Vehicle 95 ${ }^{\text {th }}$ Percentile Queue

Intersection ${ }^{1}$	Movement	Peak Hour	Scenario		
			Opening Year 2022		
			SimTraffic ${ }^{2}$ 95th Percentile Queue (ft)	Storage Length (ft)	Adequate
1. Iron Mountain Rd / SR 299	SB (L)	AM	40	210	Yes
		PM	50	210	Yes
	SB (R)	AM	55	210	Yes
		PM	25	210	Yes
	EB (L)	AM	25	85	Yes
		PM	30	85	Yes
	WB (R)	AM	0	165	Yes
		PM	0	165	Yes
4. Iron Mountain Rd / Stubbs Ln	WB (LR)	AM	10	105	Yes
		PM	25	105	Yes
5. Iron Mountain Rd / Lumber Manufacturer 4-leg Driveway	EB (LTR)	AM	40	100	Yes
		PM	65	100	Yes
	WB (LTR)	AM	35	100	Yes
		PM	65	100	Yes
6. Iron Mountain Rd / Ball Mill Rd	EB (LTR)	AM	40	320	Yes
		PM	55	320	Yes
	WB (LTR)	AM	30	240	Yes
		PM	35	240	Yes
7. Iron Mountain Rd / Keswick Dam Rd	WB (LR)	AM	65	420	Yes
		PM	55	420	Yes

[^0]

Project No. 12560517 Report No. RPT001 Date 4/28/2022

FIGURE 5.1

5.2 Opening Year 2022 Roadway Segment Operations

Using HCM 6 methodology for two-lane roadways for Class II highways, the following segment was evaluated:

1. Iron Mountain Road, just north of SR 299

The appropriate heavy vehicle percentages, directional volumes (analysis direction and opposing direction), peak hour factors, access points, and roadway characteristics were applied. In addition, this segment was modeled with a 45 mph base free flow speed, rolling terrain, and no passing. This coincides with the current conditions, and it is noted 45 mph is the most conservative per the HCM 6 methodology. As presented in Table 5.3, are the results for the one study segment. The study segment of northbound (NB) direction on Iron Mountain Road operates at LOS B. The LOS methodology for Class II highways is based on the percent time spent following with no passing. This segment was modeled with a no-passing zone.

Table 5.3 Opening Year 2022 Scenario - Two-Lane Segment Level of Service

Opening Year 2022									
	Segment Name	Direction	Base Free Flow Speed $(\mathrm{mph})^{2}$	AM Peak Hour			PM Peak Hour		
Seg No				PTSF ${ }^{1}$	V/C	Level of Service	PTSF ${ }^{1}$	V/C	Level of Service
1	Iron Mountain Road - North of Baker Hills Road	NB	45	35.8	0.04	A	46.3	0.05	B

[^1]
6. Trip Generation and Trip Distribution

6.1 Project Description

The proposed project would expand the existing facility from an approved use permit area of ± 110.69 acres to a proposed total Project area of ± 179.97 acres. However, as previously noted the 69.28 acres expansion will serve as a buffer. Additionally, the project would increase the total yearly aggregate sale from 250,000 tons to 500,000 tons. The total estimated amount proposed to be mined will increase from 15.92 million tons to 25.4 million tons over three phases.

The following components of the expansion will impact traffic pattern in the area therefore are applicable to this study:

- Increase rock product mining from 250,000 to 500,000 tons per year.
- Increase the December 31, 2072 "sunset" year to December 31, 2099.
- Number of full-time employees will increase from eight (8) to nine (9).

For the full and complete project description, refer to the January, 2022 Project Description on file with the County of Shasta Resource Management Department.
With Plus Project Conditions, the intersection of Iron Mountain Road/SR 299 (Intersection 1) was analyzed with a westbound 315 foot right turn lane with a 120 foot taper and bike lane per coordination with Caltrans. The existing right turn lane is 165 feet with a 300 foot taper.

6.2 Project Trip Generation

6.2.1 Daily Truck Trips

Based on knowledge of the existing operations, there is a daily average of 92 truck trips (46 trucks going in and out of the site) for existing conditions with 250,000 tons of yearly aggregate sale. However, for purposes of this TIAR, a conservative average of 110 daily truck trips is used for the existing daily average for the trip generation. In addition, the 110 truck trips was also used to evaluate impacts in the October 2005 TIAR for the currently approved UP 07-020. The Use Permit limited truck traffic to and from the project site to 220 daily truck trips.

In doubling the sale of aggregate from 250,000 tons to 500,000 tons as proposed, the number of daily trips could also double to 220 truck trips which, as previously noted, is currently the maximum number of allowable round truck trips per day. However, the average is more likely to be 184 truck trips based on current operations. In capturing a conservative approach, the traffic analysis evaluated the maximum 220 daily truck trips.

6.2.2 Daily Light Duty Vehicle Trips

This existing light duty vehicle trips include all employee trips (2 trips per employee - coming in and going out), all deliveries done with light duty trucks (less than 3 axles), and any customers/consultants. The current number of employees at the site is 8 full time and 1 part time employees. Assuming 2 trips per employee, the light duty daily trips per employees is 18 total trips. An additional 6 trips are added to light vehicle trips to account for any other trips made by for deliveries and clients.

In the proposed conditions, the number of full-time employees will increase from 8 to 9 full-time and the number of part-time employees remains at 1 . The proposed daily light duty trips would therefore add 2 additional trips from existing conditions.

6.2.3 Peak Hour Truck Trips

Peak hour truck trips will be estimated based on existing project driveway traffic counts.
Existing vehicle classification traffic counts (identifies trucks vs light duty vehicles) at the 2 existing driveways from October 22, 2019, show the following characteristics:

- 8 truck trips in the AM peak hour (3 in and 5 out) - all at north driveway
- 15 truck trips in the PM peak hour (8 in and 7 out) - all at north driveway

The existing site generates a constant amount of truck trips throughout the day. Therefore, the existing AM and PM truck trips is assumed to be 16 trips (8 in and 8 out) in the AM and 16 trips (8 in and 8 out) in the PM.
The proposed conditions peak hour truck trips were calculated based on correlation between hourly trips to daily trips in the existing conditions.

In existing conditions, 110 daily trips results in 16 peak hour trips (16 AM peak hour and 16 PM peak hour), therefore in proposed conditions, 220 daily trips will be expected to produce 32 peak hour trips (32 AM peak hour and 32 PM peak hour).

6.2.4 Peak Hour Light Vehicle Trips

Similar to peak hour truck trips, peak hour light vehicle trips are estimated based on existing project driveway traffic counts.

Existing classification traffic counts (identifies trucks vs light duty vehicles) at the 2 existing driveways from October 22, 2019, shows the following regarding light vehicle trips:

- 2 trips in the AM peak hour (0 in and 2 out) - all at north driveway
- 8 trips in the PM peak hour (4 in and 4 out) - all at north driveway

There were also light duty vehicle counts at the 2 existing driveways from February 2019. The counts show:

- 4 trips in the AM (1 in and 3 out) - all at north driveway
- 7 trips in the PM (3 in and 4 out) - all at north driveway

Since the AM peak hour counts from February 2019 is higher than October 2019. The most conservative scenario for the existing light vehicle hourly trips were used in the analysis (AM peak hour from Feb 2019 and PM peak hour from Oct 2019) and are as follows:

- 4 trips in the AM (1 in and 3 out)
- 8 trips in the PM (4 in and 4 out)

For proposed conditions, the number of full-time employees will increase from 8 to 9 full-time and the number of parttime employees will remain at 1 . This will result in an increase for 1 trip in during AM peak hour and 1 trip out in the PM peak hour.
Proposed trip generation including daily, AM and PM peak hours for light duty vehicles and trucks are summarized in
Table 6.1. The proposed expansion of CCA will generate 88 net new daily trips, 13 AM peak hour trips ($6 \mathrm{In}, 7$ out) and 9 PM peak hour trips (4 in, 5 out).

Project Trip Generation

Existing Land Use	Unit	Daily Total	AM			PM		
			Total	In (\%)	Out (\%)	Total	In (\%)	Out (\%)
Existing Truck Trips	$\begin{gathered} 250,000 \\ \text { tons } \end{gathered}$	110	16	50\%	50\%	16	50\%	50\%
Existing Light Duty Vehicle Trips	$\begin{gathered} 250,000 \\ \text { tons } \end{gathered}$	24	4	75\%	25\%	8	50\%	50\%
Existing Total Trips	-	134	20	11	9	24	12	12
Proposed Land Use	Unit	Daily Total	Total	In (Trips)	$\begin{aligned} & \text { Out } \\ & \text { (Trips) } \end{aligned}$	Total	In (Trips)	Out (Trips)
Proposed Heaw Vehicle	$\begin{gathered} 500,000 \\ \text { tons } \end{gathered}$	220	32	16	16	32	16	16
Additional Employee Trips (light vehicle)	Employees	2	1	1	0	1	0	1
Total Proposed Trips	-	222	33	17	16	33	16	17
Net Project Trips	-	88	13	6	7	9	4	5

6.3 Project Trip Distribution and Assignment

Project trip distribution patterns for the study area were estimated based on existing traffic patterns, anticipated delivery routes, and local knowledge of the area.

- $\quad 95 \%$ to/from the South on Iron Mountain Road
- 10% to/from the west via SR 299
- 85% to/from east via SR 299
- 5% to/from the north of Ball Mill Road on Iron Mountain Road
- 0% to/from the east via Keswick Dam Road
- 5% to/from the north via Iron Mountain Road

Due to the 20 -ton limit on Keswick Dam Road, there are no truck trips assigned to Keswick Dam Road. The current operations for CCA does not import any aggregate rather all is excavated on site. With this operation, the trucks utilize SR 299 in delivering the material. However, light duty truck can use Keswick Dam Road. The total amount of trips assigned to go north toward Keswick Dam Road is just 1 vehicle in the AM and PM peak hours. This is assumed to be a light duty vehicle and is insignificant.
Figures 6.1 and Figure 6.2 show the Project Trip Distribution and Project Trip Assignment, respectively, on the existing street network.

LEGEND:

XX - AM PEAK HOUR TRAFFIC VOLUMES
(XX) - PM PEAK HOUR TRAFFIC VOLUMES

- - STUDY INTERSECTION

CRYSTAL CREEK AGGREGATES EXPANSION
TRAFFIC IMPACT ANALYSIS REPORT
PROJECT TRIP ASSIGNMENT

Project No. 12560517 Report No. RPT001 Date 4/28/2022

FIGURE 6.2

7. Opening Year 2022 Plus Project Scenario

Opening Year 2022 Plus Project scenario volumes were simulated by superimposing traffic generated by the Project trip generation onto Opening Year 2022 traffic volumes. Figure 7.1 depicts the weekday AM and PM Peak Hour Opening Year 2022 Plus Project intersection volumes.

Intersection of Iron Mountain Road/SR 299 (Intersection 1) was analyzed with a westbound 315 foot right turn lane and a 120 foot taper with a bike lane per coordination with Caltrans. The existing turn lane is 165 feet with a 300 feet taper.

Project No. 12560517 Report No. RPT001 Date 4/28/2022

FIGURE 7.1

7.1 Opening Year 2022 Plus Project Intersection Operations

Table 7.1 presents a summary of the intersection operations during the weekday AM and PM peak hour for the Opening Year 2022 Plus Project Scenario. All traffic analysis reports are included in Appendix B Traffic Analysis Reports.

Table 7.1 Opening Year 2022 Plus Project Scenario Intersection LOS

ID	Intersection	Peak Hour	Target LOS	Opening Year 2022 Plus Project						
				Control	Delay	LOS				
1	Iron Mountain Road / SR 299	AM	C	TWSC ${ }^{1}$	13.9	B				
		PM			15.9	C				
2	Iron Mountain Road / Middle Creek Road East Leg	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
3	Iron Mountain Road / CCA South Driveway	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
4	Iron Mountain Road / Stubbs Lane	AM	E	TWSC ${ }^{1}$	9.3	A				
		PM			9.2	A				
5	Iron Mountain Road / Lumber Manufacture Driveway	AM	E	TWSC ${ }^{1}$	11.2	B				
		PM			11.3	B				
6	Iron Mountain Road / Ball Mill Road	AM	E	TWSC ${ }^{1}$	9.7	A				
		PM			9.5	A				
7	Iron Mountain Road / Keswick Dam Road	AM	E	TWSC ${ }^{1}$	9.2	A				
		PM			9.2	A				
${ }^{1}$ Analyzed using HCM 6 methodology for Tw o-Way Stop Controlled (TWSC) intersection. Delay presented for w orst of minor street movement or the major street left turn movement										

As presented in Table 7.1 all study intersections currently operate at or above the threshold LOS.
The primary access for the Project is Intersection 6 (Iron Mountain Road at Ball Mill Road). This intersection is currently signed (CCA with address) as the main access point. The other Project access intersections had minimal to no volumes. The intersections on Iron Mountain Road at Stubbs Lane and Lumber Manufacture had limited turning volumes off Iron Mountain in the peak hour. However, the intersection at Lumber Manufacture had through volume across Iron Mountain Road and therefore, the delay was higher than the access points for CCA.

The intersection of Iron Mountain Road/SR 299 continues to operate at an acceptable LOS of C with the addition of project trips. This intersection is analyzed with a longer westbound right turn pocket.

In evaluating the Existing Plus Project Conditions further, the $95^{\text {th }}$ percentile queues were evaluated. As presented in Table 7.2, all queues were adequately accommodated at the study intersections. All queuing reports are included in Appendix B Traffic Analysis Reports

Table 7.2

Intersection	Movement	Peak Hour	Scenario		
			Opening Year 2022 Plus Project		
			SimTraffic ${ }^{1}$ 95th Percentile Queue (ft)	Storage Length (ft)	Adequate
1. Iron Mountain Rd / SR 299	SB (L)	AM	55	210	Yes
		PM	50	210	Yes
	SB (R)	AM	50	210	Yes
		PM	25	210	Yes
	EB (L)	AM	30	85	Yes
		PM	30	85	Yes
	WB (R)	AM	0	315	Yes
		PM	0	315	Yes
4. Iron Mountain Rd/ Stubbs Ln	WB (LR)	AM	10	105	Yes
		PM	20	105	Yes
5. Iron Mountain Rd / Lumber Manufacturer 4-leg Driveway	EB (LTR)	AM	40	100	Yes
		PM	65	100	Yes
	WB (LTR)	AM	35	100	Yes
		PM	70	100	Yes
6. Iron Mountain Rd / Ball Mill Rd	EB (LTR)	AM	65	320	Yes
		PM	65	320	Yes
	WB (LTR)	AM	35	240	Yes
		PM	35	240	Yes
	NB (LTR)	AM	5	650	Yes
		PM	10	650	Yes
	SB (LTR)	AM	5	1000	Yes
		PM	0	1000	Yes
7. Iron Mountain Rd/Keswick Dam Rd	WB (LR)	AM	65	420	Yes
		PM	50	420	Yes

[^2]
7.2 Opening Year 2022 Plus Project Roadway Segment Operations

As presented in Table 7.3, the study segment on Iron Mountain Road was analyzed. The appropriate heavy vehicle percentages and directional volumes were updated for Opening Year 2022 Plus Project Scenario. The study segment will operate at LOS B with the Project traffic.

Opening Year 2022 Plus Project									
Seg No	Segment Name	Direction	Base Free Flow Speed $(\mathrm{mph})^{2}$	AM Peak Hour			PM Peak Hour		
				PTSF ${ }^{1}$	V/C	Level of Service	PTSF ${ }^{1}$	V/C	Level of Service
1	Iron Mountain Road - North of Baker Hills Road	NB	45	37.8	0.04	A	47.0	0.05	B

${ }^{1}$ Percent Time Spent Follow ing
${ }^{2}$ For Class II Highw ays, Base Free Flow Speeds range from $45-70 \mathrm{mph}$

7.3 Project Site Access/Circulation

With the proposed expansion of CCA, the vehicle access points are proposed to remain the same as existing conditions. The main access will remain at Ball Mill Road with direct access to the existing scales, office, and the mining area. Based on current operations, the existing main access and internal circulation, are sufficient in providing the necessary driveway widths and truck turning radii. The intersections on Iron Mountain Road at Stubbs Lane and Lumber Manufacture are not significantly utilized in the peak hours and have minimal traffic due to the limited uses.

The Project proposes driveway usage as follows:

- Ball Mill Road Driveway. This driveway will serve all traffic including aggregate trucks and employees.

8. Cumulative Year 2042 Scenario

Cumulative Year 2042 Scenario refer to a future analysis scenario approximately 20 years in the future. Cumulative Year 2042 Scenario refer to the cumulative "No Project" condition where the Project remains undeveloped through the year 2042 but the remaining General Plan land uses are assumed developed.

The most recent SHASTASIM 1.2, Activity Based Regional Travel Demand Model was used to develop traffic volume growth projections based on the expected 20 -year growth within Shasta County and Keswick area. SHASTASIM 1.2 contains volume projection for roadways in Shasta County for year 2020 and year 2040. A yearly growth rate was calculated based on the growth between the 2020 and 2040 model projections. Based on the model growth, the growth rate used for Cumulative volume development is 1% per year. This 20 -year growth rate was applied to Opening Year 2020 volumes to generate a forecast of Cumulative Year 2042 conditions without the Project. Cumulative Year 2042 AM and PM peak hour intersection volumes are shown in Figure 8.1.

Project No. 12560517 Report No. RPT001 Date 4/28/2022

CRYSTAL CREEK AGGREGATES EXPANSION
TRAFFIC IMPACT ANALYSIS REPORT
CUMULATIVE YEAR 2042
AM AND PM VOLUMES
FIGURE 8.1

8.1 Cumulative Year 2042 Intersection Operations

Table 8.1 presents a summary of the intersection operations for the weekday AM and PM peak hour conditions for the Cumulative Year 2042 Scenario. All traffic analysis reports are included in Appendix B Traffic Analysis Reports.

Table 8.1
Cumulative Year 2042 Scenario AM and PM Intersection LOS

	Intersection	Peak Hour	Target LOS	Cumulative Year 2042						
				Control	Delay	LOS				
1	Iron Mountain Road / SR 299	AM	C	TWSC ${ }^{1}$	15.7	C				
		PM			19.0	C				
2	Iron Mountain Road / Middle Creek Road East Leg	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
3	Iron Mountain Road / CCA South Driveway	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
4	Iron Mountain Road / Stubbs Lane	AM	E	TWSC ${ }^{1}$	9.4	A				
		PM			9.3	A				
5	Iron Mountain Road / Lumber Manufacture Driveway	AM	E	TWSC ${ }^{1}$	11.4	B				
		PM			11.6	B				
6	Iron Mountain Road / Ball Mill Road	AM	E	TWSC ${ }^{1}$	9.8	A				
		PM			9.7	A				
7	Iron Mountain Road / Keswick Dam Road	AM	E	TWSC ${ }^{1}$	9.4	A				
		PM			9.4	A				
${ }^{1}$ Analyzed using HCM 6 methodology for Tw o-Way Stop Controlled (TWSC) intersection. Delay presented for w orst of minor street movement or the major street left turn movement										

As shown in Table 8.1, all study intersections are projected to operate at or above the threshold LOS with Cumulative Year 2042 volumes. In evaluating the study intersection further, the $95^{\text {th }}$ percentile queues were evaluated. Table 8.2 presents the $95^{\text {th }}$ percentile queue lengths for Cumulative Year 2042 Scenario. All queuing reports are included in Appendix B Traffic Analysis Reports.

Table 8.2

Intersection ${ }^{1}$	Movement	Peak Hour	Scenario		
			Cumulative Year 2042		
			SimTraffic ${ }^{1}$ 95th Percentile Queue (ft)	Storage Length (ft)	Adequate
1. Iron Mountain Rd/ SR 299	SB (L)	AM	40	210	Yes
		PM	50	210	Yes
	SB (R)	AM	55	210	Yes
		PM	25	210	Yes
	EB (L)	AM	25	85	Yes
		PM	30	85	Yes
	WB (R)	AM	0	165	Yes
		PM	5	165	Yes
4. Iron Mountain Rd/ Stubbs Ln	WB (LR)	AM	10	105	Yes
		PM	25	105	Yes
5. Iron Mountain Rd / Lumber Manufacturer 4-leg Driveway	EB (LTR)	AM	40	100	Yes
		PM	65	100	Yes
	WB (LTR)	AM	35	100	Yes
		PM	70	100	Yes
6. Iron Mountain Rd / Ball Mill Rd	EB (LTR)	AM	50	320	Yes
		PM	60	320	Yes
	WB (LTR)	AM	30	240	Yes
		PM	35	240	Yes
	NB (LTR)	AM	0	650	Yes
		PM	15	650	Yes
	SB (LTR)	AM	10	1000	Yes
		PM	0	1000	Yes
7. Iron Mountain Rd / Keswick Dam Rd	WB (LR)	AM	65	420	Yes
		PM	55	420	Yes

${ }^{1}$ Intersection 2 and 3 reported no queues and therefore w asn't included in table.
${ }^{2}$ Queue lengths are rounded up to the nearest 5 feet increment.

8.2 Cumulative Year 2042 Roadway Segment Operations

As presented in Table 8.3, the study segment on Iron Mountain Road was analyzed for Cumulative Year 2042 Scenario. The appropriate heavy vehicle percentages and directional volumes were updated with the same roadway characteristics as existing. The study segment will operate at LOS B with Cumulative Year 2042 Scenario.

Table 8.3 Cumulative Year 2042 Scenario - Two-Lane Segment Level of Service

Cumulative Year 2042									
Seg No	Segment Name	Direction	Base Free Flow Speed $(\mathrm{mph})^{2}$	AM Peak Hour			PM Peak Hour		
				PTSF ${ }^{1}$	V/C	Level of Service	PTSF ${ }^{1}$	V/C	Level of Service
1	Iron Mountain Road - North of Baker Hills Road	NB	45	38.4	0.04	A	49.3	0.06	B

[^3]
9. Cumulative Year 2042 Plus Project Scenario

Cumulative Year 2042 Plus Project Scenario traffic volumes were simulated by superimposing traffic generated by the project onto Cumulative Year 2042 Scenario volumes. Figure 9.1 depicts weekday AM and PM Cumulative Year 2042 Plus Project peak hour intersection volumes.

9.1 Cumulative Year 2042 Plus Project Intersection Operations

Table 9.1 presents a summary of the intersection operations for the weekday AM and PM peak hour for the Cumulative Year 2042 Plus Project Scenario.

As shown in Table 9.1, all study intersections are projected to operate at LOS C or better, with Iron Mountain Road at SR-299 intersection operating with the highest delay in the PM peak hour. This is due to the increase in traffic and overall truck percentages. All traffic analysis reports are included in Appendix B Traffic Analysis Reports.

The intersection of Iron Mountain Road/SR 299 continues to operate at an acceptable LOS of C with the addition of project trips. This intersection is analyzed with a longer westbound right turn pocket.

Table 9.1 Cumulative Year 2042 Plus Project Scenario Intersection LOS

	Intersection	Peak Hour	Target LOS	Cumulative Year 2042 Plus Project						
				Control	Delay	LOS				
1	Iron Mountain Road / SR 299	AM	C	TWSC ${ }^{1}$	16.0	C				
		PM			19.2	C				
2	Iron Mountain Road / Middle Creek Road East Leg	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
3	Iron Mountain Road / CCA South Driveway	AM	E	TWSC ${ }^{1}$	0.0	A				
		PM			0.0	A				
4	Iron Mountain Road / Stubbs Lane	AM	E	TWSC ${ }^{1}$	9.4	A				
		PM			9.3	A				
5	Iron Mountain Road / Lumber Manufacture Driveway	AM	E	TWSC ${ }^{1}$	11.5	B				
		PM			11.7	B				
6	Iron Mountain Road / Ball Mill Road	AM	E	TWSC ${ }^{1}$	9.8	A				
		PM			9.8	A				
7	Iron Mountain Road / Keswick Dam Road	AM	E	TWSC ${ }^{1}$	9.4	A				
		PM			9.4	A				
${ }^{1}$ Analyzed using HCM 6 methodology for Two-Way Stop Controlled (TWSC) intersection. Delay presented for w orst of minor street movement or the major street left turn movement										

In evaluating the study intersection further, the $95^{\text {th }}$ percentile queues were evaluated. Table 9.2 presents the $95^{\text {th }}$ percentile queue lengths for Cumulative Year 2042 Plus Project Scenario. All queuing reports are included in Appendix B Traffic Analysis Reports.

Table 9.2 Cumulative Year 2042 Plus Project Scenario 95th Percentile Queues

Intersection	Movement	Peak Hour	Scenario		
			Cumulative Year 2042 Plus Project		
			SimTraffic 95th Percentile Queue (ft)	Storage Length (ft)	Adequate
1. Iron Mountain Rd / SR 299	SB (L)	AM	60	210	Yes
		PM	55	210	Yes
	SB (R)	AM	50	210	Yes
		PM	25	210	Yes
	EB (L)	AM	30	85	Yes
		PM	35	85	Yes
	WB (R)	AM	0	315	Yes
		PM	0	315	Yes
4. Iron Mountain Rd / Stubbs Ln	WB (LR)	AM	0	105	Yes
		PM	15	105	Yes
5. Iron Mountain Rd / Lumber Manufacturer 4-leg Driveway	EB (LTR)	AM	40	100	Yes
		PM	70	100	Yes
	WB (LTR)	AM	30	100	Yes
		PM	75	100	Yes
6. Iron Mountain Rd / Ball Mill Rd	EB (LTR)	AM	70	320	Yes
		PM	75	320	Yes
	WB (LTR)	AM	30	240	Yes
		PM	35	240	Yes
	NB (LTR)	AM	10	650	Yes
		PM	15	650	Yes
	SB (LTR)	AM	5	1000	Yes
		PM	0	1000	Yes
7. Iron Mountain Rd / Keswick Dam Rd	WB (LR)	AM	65	420	Yes
		PM	50	420	Yes

[^4]

Project No. 12560517 Report No. RPT001 Date $4 / 28 / 2022$

FIGURE 9.1

CRYSTAL CREEK AGGREGATES EXPANSION
TRAFFIC IMPACT ANALYSIS REPORT
CUMULATIVE YEAR 2042
PLUS PROJECT AM AND PM VOLUMES

9.2 Cumulative Year 2042 Plus Project Roadway Segment Operations

As presented in Table 9.3, the study segment on Iron Mountain Road was analyzed for Cumulative Year 2042 Plus Project Scenario. The appropriate heavy vehicle percentages and directional volumes were updated with the project trips. The study segment will operate at LOS B with Cumulative Year 2042 Plus Project Scenario.

Table 9.3 Cumulative Year 2042 Plus Project Scenario - Two-Lane Segment LOS

Cumulative Year 2042 With Project									
	Segment Name	Direction	Base FreeFlow Speed$(\mathrm{mph})^{2}$	AM Peak Hour			PM Peak Hour		
Seg No				PTSF ${ }^{1}$	V/C	Level of Service	PTSF ${ }^{1}$	V/C	Level of Service
1	Iron Mountain Road - North of Baker Hills Road	NB	45	40.8	0.05	B	49.8	0.06	B

[^5]
10. Vehicle Miles Travelled (VMT) Analysis

As part of this study, GHD has reviewed available literature, guidance, and documentation from the County of Shasta and the Shasta Regional Transportation Agency (SRTA) to identify any draft or advisory VMT screening thresholds, baseline estimates, and/or VMT threshold recommendations. Absent of any adopted or screening criteria for threshold values from the County or SRTA, GHD has presumed the screening thresholds, and a reduction of 15% from baseline as the VMT impact threshold. This impact threshold is consistent with the OPR Technical Advisory (December 2018), Caltrans TISG, and CEQA Guidelines. Many agencies use "screening thresholds" to quickly identify when a project should be expected to cause a less than significant impact without conducting a detailed VMT analysis (see e.g., CEQA Guidelines, $\S \S 15063(\mathrm{c})(3)(\mathrm{C}), 15128$, and Appendix G). GHD has first reviewed the screening thresholds per OPR guidance. If the Project does not meet the screening thresholds, then GHD will estimate baseline tour-based VMT per capita, as well as boundary-based VMT for reference, using the SRTA Regional Travel Demand Model.

10.1 Regulatory Framework

In December 2018, OPR released its final Technical Advisory on Evaluating Transportation Impacts in CEQA. Generally, OPR recommends that a reduction of 15% or more in existing VMT should be the target. Below is a summary of OPR's recommended VMT impact thresholds and methodologies for land use projects:

Residential or Work/Office Projects - A proposed project exceeding a level of 15% below existing regional VMT per employee may indicate a significant transportation impact.

Retail Projects - A net increase in total VMT may indicate a significant transportation impact.
Other Projects - Lead agencies, using more location-specific information, may develop their own more specific thresholds, which may include other land use types. In developing thresholds for other project types, or thresholds different from those recommended here, lead agencies should consider the purposes described in section 21099 of the Public Resources Code and regulations in the CEQA Guidelines on the development of thresholds of significance (e.g., CEQA Guidelines, § 15064.7).

10.2 Screening Thresholds

OPR's Technical Advisory lists the following screening thresholds for land use projects. These types of development projects are presumed to have a less than significant impact on vehicle miles traveled and therefore, a less than significant adverse impact on transportation. OPR's Technical Advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.

- Projects that are consistent with the Sustainable Communities Strategy (SCS) or General Plan and generate or attract fewer than 110 light duty vehicle daily trips (per CEQA). Therefore, absent substantial evidence otherwise, it is reasonable to conclude that the addition of 110 light duty vehicle trips or fewer trips could be considered not to lead to a significant impact.
- VMT is not applicable to heavy vehicle trips
- Map-based screening for residential and office projects located in low VMT areas, and incorporate similar features (density, mix of uses, transit accessibility).
- Certain projects within $1 / 2$ mile of an existing major transit stop or an existing stop along a high quality transit corridor. However, this will not apply if information indicates that the project will still generate high levels of VMT.
- Affordable Housing Development in infill locations.
- Locally-serving retail projects, typically less than 50,000 square feet.

The net daily trip generation for light duty vehicle strip from the proposed expansion is estimated to be 2 vehicle trips. Therefore, the project is assumed to cause a less-than-significant transportation impact, and no further VMT analysis is required.

11. Mitigation Measures

The Project will not degrade the LOS at study intersections and roadways segments to unacceptable levels therefore no mitigation measures are required at the intersections. Per CEQA requirements, this study evaluates the safety and VMT impacts of the project. There are no foreseeable safety impacts from the project. The project is screened out of VMT analysis due to low number of net light duty vehicle project trips.
However, per coordination with Caltrans District 2, there are some improvements identified at the intersection of Iron Mountain Road/SR 299 to accommodate westbound right turning truck traffic and vehicle to bicycle mixing zone with the right turn. This will be further discussed in Section 11.2.

11.1 Bikeway Evaluation

There were no bicycle collisions on any of the project intersections or segments between 2016 and 2020. In addition, there were no bicycle collisions 1000 feet to the east or 1000 feet to the west of the intersection on SR 299 and Iron Mountain Road. The current bikeways are provided through the roadway shoulders on SR 299 and Iron Mountain Road.

11.2 State Route 299 and Iron Mountain Road Intersection Improvement

The intersection of Iron Mountain Road/SR 299 is currently a TWSC intersection with SR 299 uncontrolled. Per the Shasta County General Plan, SR 299 is a bicycle planning corridor. In the vicinity of Iron Mountain Road, SR 299 has varying shoulder widths and no bike lanes. Currently, there is an eastbound left turn and a westbound right turn lane at the intersection. The westbound right turn pocket is 165 feet with a 300 feet taper length. The SR 299 approaches to the intersection are also in a crest vertical curve, vehicles will experience a slight uphill grade as they approach the intersection.

The proposed project will add 4 vehicles in the AM peak hour and 2 vehicles in the PM peak hour to westbound right turn movement at this intersection. The project will add 1 vehicle trip in the AM and PM peak hours to the eastbound left turn movement. Most of the trips generated by the project is heavy vehicle trips. To accommodate the added trucks through the intersection and provide the appropriate deceleration length, the project proposes to increase the westbound right turn pocket length to 315 feet with a 120 feet taper.

Additionally, with this right turn modification, a 5 feet bike lane adjacent to the outside westbound through lane will be provided to accommodate bike traffic through the intersection.

Currently, there is an unpaved graded shoulder adjacent to the westbound right turn lane. Evaluation of paving this area should be explored in the design of the right turn lane in providing additional width.

The preliminary layout of the proposed intersection improvements to Iron Mountain Road/SR 299 is shown in Figure 11.1.

In the most recent 5 years, there were 4 collisions at the intersections with 2 broadside collisions. There were no bicycle related collisions at the intersection. Increasing the deceleration length of the westbound right turn lane and adding a bike lane for the vehicle and bicycle mixing zone will help to increase safety at the intersection.

11.3 Fair Share Calculation

In calculating the fair share of the project impacts at the Iron Mountain Road/SR 299 intersection, Caltrans methodology can be used.

The proposed project's fair share of the cost of improvements are based upon the method for calculating equitable mitigation measures outlined in the Caltrans Guide for the Preparation of Traffic Impact Studies (State of California, DOT, June 2001). The project's equitable share responsibility is calculated using the following formula:

$$
\mathrm{P}=\mathrm{T} /(\mathrm{TB}-\mathrm{TE}) \text { where, }
$$

$P=$ The equitable share for the project's traffic impact
T = The vehicle trips generated by the project during the peak hour of adjacent State highway facility in vehicles per hour (vph).
TB = The forecasted traffic volume on an impacted State highway facility at the time of general plan build-out (e.g. 20 year model or the furthest future model date feasible), vph.
TE = The traffic volume existing on the impacted State highway facility plus other approved projects that will generate traffic that has yet to be constructed/opened, vph.

Based on project trips through the intersections, the fair share contribution of the project to this intersection improvement is 8% in Cumulative Year 2042 Plus Project Scenario.

11.4 Additional Observations

The historical crash data as well as observed conditions indicates that commercial vehicles are successfully using Iron Mountain Road. Vehicles trips added by the proposed project will include some amount of commercial vehicles.

No safety improvements are currently recommended based on crash rates.
The Middle Creek Trail was paved in 2011 and the Iron Mountain Road shoulders, between SR 299 and the Middle Creek Trail, were widened in 2012. Iron Mountain Road connects the Salt Creek Trail, south of SR 299 to Middle Creek Trail and has become popular with recreational bicyclists and pedestrians.

Over the years CCA has corrected these conditions. Further, the County receives a yearly tonnage fee to pay for needed corrections as previously discussed in Section 3 of this report.

12. Recommendation and Conclusions

No significant impact to the LOS are anticipated with the Project. No mitigation measures are recommended related to traffic LOS.

The study recommends that the intersection of Iron Mountain Road at SR 299 is improved with the following improvements:

- Increasing the length of westbound right turn lane from 165 ft to 315 ft by widening the paved area at the westbound approach to the intersection.
- Modifying the length of westbound right turn taper from 300 ft to 120 ft
- Adding a 5 feet bike lane adjacent to the outside westbound through lane through the intersection

These recommendations are consistent with feedback received from Caltrans regarding necessary improvements at the intersection.

No Safety improvements are currently recommended based on crash rates.
The proposed Project is projected to generate 88 net daily vehicle trips (mostly heavy vehicles) with only 2 additional light duty vehicle trips thus meeting the screening threshold of 110 daily light duty vehicle trips per OPR's Technical Advisory. Therefore, this Project is presumed to have a less than significant impact on VMT and therefore, a less than significant adverse impact on transportation.

Appendices

Appendix A
Traffic Counts

Intersection Turning Movement Count

Iron Mountain Rd \& SR299/Eureka Way

Intersection Turning Movement Count

Location: Iron Mountain Rd \& Middle Creek Rd City: Redding

Project ID: 19-07384-002
Control: 1-Way Stop (WB) Date: 10/22/2019

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	$\begin{gathered} 0 \\ \text { NL } \end{gathered}$		$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \text { SL } \end{gathered}$	0ST	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{aligned} & 0 \\ & \text { EL } \end{aligned}$	$\begin{gathered} 0 \\ \text { ET } \end{gathered}$	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 0 \\ \text { WL } \end{gathered}$	$\begin{gathered} 0 \\ \text { WT } \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
3:00 PM	0	16	0	0	0	13	0	0	0	0	0	0	0	0	0	0	29
3:15 PM	0	11	0	0	0	9	0	0	0	0	0	0	0	0	0	0	20
3:30 PM	0	17	0	0	0	13	0	0	0	0	0	0	0	0	0	0	30
3:45 PM	0	12	0	0	0	13	0	0	0	0	0	0	0	0	0	0	25
4:00 PM	0	24	0	0	0	11	0	0	0	0	0	0	0	0	0	0	35
4:15 PM	0	17	0	0	0	15	0	0	0	0	0	0	0	0	0	0	32
4:30 PM	0	10	0	0	0	14	0	0	0	0	0	0	0	0	0	0	24
4:45 PM	0	11	0	0	0	14	0	0	0	0	0	0	1	0	0	0	26
5:00 PM	0	11	0	0	0	11	0	0	0	0	0	0	0	0	0	0	22
5:15 PM	0	5	0	0	0	10	0	0	0	0	0	0	0	0	0	0	15
5:30 PM	0	11	0	0	0	6	0	0	0	0	0	0	0	0	0	0	17
5:45 PM	0	5	0	0	0	11	0	0	0	0	0	0	1	0	0	0	17
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
TOTAL VOLUMES:	0	150	0	0	0	140	0	0	0	0	0	0	2	0	0	0	
APPROACH \%'s :	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%					100.00\%	0.00\%	0.00\%	0.00\%	
PEAK HR :		33:30 PM -	04:30 PM														TOTAL
PEAK HR VOL :	0	70	0	0	0	52	0	0	0	0	0	0	0	0	0	0	122
PEAK HR FACTOR :	0.000	0.729	0.000	0.000	0.000	0.867	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.871
		0.7				0.8											0.871

Iron Mountain Rd \& Middle Creek Rd

Peak Hour Turning Movement Count

Intersection Turning Movement Count

Iron Mountain Rd \& CCA South Dwy/Ball Mill Rd

Intersection Turning Movement Count

Iron Mountain Rd \& Stubbs Ln

Peak Hour Turning Movement Count

ID: 19-07384-004
City: Redding

Total Vehicles (Noon)

Total Vehicles (PM)

Day: Tuesday
Date: 10/22/2019

AM	0	61	0	0	55	AM
NOON	0	0	0	0	0	NOON

06:00 AM - 09:00 AM
NONE
03:00 PM - 06:00 PM

PM NOON AM

PM	48	0	0	69	1	PM
NOON	0	0	0	0	0	NOON
AM	62	0	0	55	0	AM
NORTHBOUND						
Iron Mountain Rd						

$\begin{array}{ll}\text { PM } \quad \text { NOON } & \text { AM } \\ & \\ & \text { HT (AM) }\end{array}$

HT (NOON)

HT (PM)

National Data \& Surveying Services

Intersection Turning Movement Count

Location: Iron Mountain Rd \& Lumber Manufacture 4-Leg Dwy
City: Redding
Project ID: 19-07384-005
Date: $10 / 22 / 2019$ Control: Ro Contro Date: 10/22/2019
Total

Total																	
NS/EW Streets:	Iron Mountain Rd				Iron Mountain Rd				Lumber Manufacture 4-Leg Dwy				Lumber Manufacture 4-Leg Dwy				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	wu	TOTAL
6:00 AM	0	7	0	0	0	4	0	0	0	0	0	0	0	0	0	0	11
6:15 AM	0	4	0	0	0	3	0	0	0	0	0	0	0	0	0	0	7
6:30 AM	0	10	0	0	0	14	0	0	0	0	0	0	0	0	0	0	24
6:45 AM	0	9	0	0	0	10	0	0	0	0	0	0	0	0	0	0	19
7:00 AM	0	11	0	0	0	11	0	0	0	0	0	0	0	3	0	0	25
7:15 AM	0	7	0	0	1	23	0	0	0	3	0	0	0	1	0	0	35
7:30 AM	0	16	0	0	0	16	0	0	0	0	0	0	0	0	0	0	32
7:45 AM	0	9	0	0	0	17	0	0	0	1	0	0	1	1	0	0	29
8:00 AM	0	17	0	0	0	9	0	0	0	0	0	0	0	0	0	0	26
8:15 AM	0	10	0	0	0	15	0	0	0	2	0	0	0	2	0	0	29
8:30 AM	0	11	0	0	0	19	0	0	0	2	0	0	0	3	0	0	35
8:45 AM	0	7	0	0	0	13	0	0	0	1	0	0	0	1	0	0	22
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	118	0	0	1	154	0	0	0	9	0	0	1	11	0	0	294
APPROACH \%'s :	0.00\%	100.00\%	0.00\%	0.00\%	0.65\%	99.35\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	8.33\%	91.67\%	0.00\%	0.00\%	
PEAK HR :	07:15 AM - 08:15 AM				$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{gathered} 65 \\ 0.707 \\ \quad 0.688 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 4 \\ 0.333 \\ \\ 0.33 \end{gathered}$	${ }_{3}^{0.000}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	$\begin{gathered} 2 \\ 0.500 \end{gathered}$	$5_{5}^{0.000}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	0	49	0	0													122
PEAK HR FACTOR :	0.000	0.721	0.000	0.000													
		0.721															0.871

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0$N L$	$\begin{gathered} 0 \\ \text { NT } \end{gathered}$	$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{SL} \end{gathered}$	ST	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 0 \\ \text { EL } \end{gathered}$	ET	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 0 \\ \text { WL } \end{gathered}$	$\begin{gathered} 0 \\ W T \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
3:00 PM	0	18	0	0	0	18	0	0	0	2	0	0	0	3	0	0	41
3:15 PM	0	11	0	0	0	10	0	0	0	3	0	0	0	6	0	0	30
3:30 PM	0	19	0	0	0	14	0	0	0	2	0	0	0	1	0	0	36
3:45 PM	0	12	0	0	0	11	0	0	0	5	0	0	0	4	0	0	32
4:00 PM	0	20	0	0	0	11	0	0	0	0	0	0	0	2	0	0	33
4:15 PM	0	19	0	0	0	13	0	0	0	1	0	0	0	0	0	0	33
4:30 PM	0	15	0	0	0	10	0	0	0	4	0	0	0	5	0	0	34
4:45 PM	0	10	0	0	0	12	0	0	0	6	0	0	0	2	0	0	30
5:00 PM	0	9	0	0	0	11	0	0	0	0	0	0	0	0	0	0	20
5:15 PM	0	5	0	0	0	12	0	0	0	2	0	0	0	2	0	0	21
5:30 PM	0	12	0	0	0	7	0	0	0	1	0	0	0	1	0	0	21
5:45 PM	0	4	0	0	0	9	0	0	0	1	0	0	0	1	0	0	15
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	154	0	0	0	138	0	0	0	27	0	0	0	27	0	0	346
APPROACH \%'s :	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	
PEAK HR :		3:00 PM -	4:00 PM														TOTAL
PEAK HR VOL :	0	60	0	0	0	53	0	0	0	12	0	0	0	14	0	0	139
PEAK HR FACTOR :	0.000	0.789	0.000	0.000	0.000	0.736	0.000	0.000	0.000	0.600	0.000	0.000	0.000	0.583	0.000	0.000	
		0.7				0.7				0.6				0.5			0.848

Iron Mountain Rd \& Lumber Manufacture 4-Leg Dwy

Intersection Turning Movement Count

Location: Iron Mountain Rd \& Ball Mill Rd

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	$\begin{gathered} 0 \\ \text { NL } \end{gathered}$		$\begin{gathered} 0 \\ \text { NR } \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \text { SL } \end{gathered}$	0ST	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{aligned} & 0 \\ & \text { EL } \end{aligned}$	0ET	0ER	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 0 \\ \text { WL } \end{gathered}$	$\begin{gathered} 0 \\ \text { WT } \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
3:00 PM	7	13	0	0	1	9	0	0	0	0	4	0	0	0	0	0	34
3:15 PM	1	10	1	0	0	9	0	0	0	0	1	0	7	0	1	0	30
3:30 PM	4	12	0	0	0	5	0	0	0	0	3	0	2	0	0	0	26
3:45 PM	0	13	1	0	0	12	0	0	1	0	2	0	0	0	0	0	29
4:00 PM	2	11	2	0	0	8	0	0	0	0	1	0	1	0	0	0	25
4:15 PM	0	20	0	0	0	10	0	0	0	0	1	0	1	0	0	0	32
4:30 PM	2	15	0	0	0	8	0	0	0	0	3	0	1	0	0	0	29
4:45 PM	1	7	0	0	0	9	0	0	1	0	2	0	0	0	0	0	20
5:00 PM	0	8	4	0	0	9	0	0	1	0	3	0	0	0	0	0	25
5:15 PM	0	4	0	0	0	6	0	0	0	0	0	0	2	0	0	0	12
5:30 PM	0	11	0	0	0	8	0	0	0	0	0	0	1	0	1	0	21
5:45 PM	0	7	1	0	0	8	0	0	0	0	0	0	0	0	0	0	16
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
TOTAL VOLUMES :	17	131	9	0	1	101	0	0	3	0	20	0	15	0	2	0	
APPROACH \%'s :	10.83\%	83.44\%	5.73\%	0.00\%	0.98\%	99.02\%	0.00\%	0.00\%	13.04\%	0.00\%	86.96\%	0.00\%	88.24\%	0.00\%	11.76\%	0.00\%	
PEAK HR :	03:00 PM - 04:00 PM				$\begin{gathered} 1 \\ 0.250 \end{gathered}$	35	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 1 \\ 0.250 \end{gathered}$	0	$\begin{gathered} 10 \\ 0.625 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 9 \\ 0.321 \end{gathered}$		1	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL
PEAK HR VOL :	12	48	2	0													119
PEAK HR FACTOR :	0.429	0.923	0.500	0.000		0.729				0.000				0.000	0.250		
	0.775					0.750				0.688				0.313			0.875

Iron Mountain Rd \& Ball Mill Rd
Peak Hour Turning Movement Count

ID: 19-07384-006
City: Redding

SOUTHBOUND

Intersection Turning Movement Count

Location: Iron Mountain Rd \& Keswick Dam Rd
City: Redding
Project ID: 19-07384-007
Control: 1-Way Stop (WB) Date: 10/22/2019

NS/EW Streets:	Iron Mountain Rd				Iron Mountain Rd				Keswick Dam Rd				Keswick Dam Rd				
AM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
6:00 AM	0	2	3	0	2	1	0	0	0	0	0	0	4	0	1	0	13
6:15 AM	0	3	2	0	4	2	0	0	0	0	0	0	13	0	1	0	25
6:30 AM	0	1	1	0	2	2	0	0	0	0	0	0	10	0	3	0	19
6:45 AM	0	1	4	0	4	1	0	0	0	0	0	0	7	0	3	0	20
7:00 AM	0	2	7	0	2	3	0	0	0	0	0	0	15	0	3	0	32
7:15 AM	0	1	6	0	4	2	0	0	0	0	0	0	14	0	2	0	29
7:30 AM	0	6	8	0	5	4	0	0	0	0	0	0	14	0	4	0	41
7:45 AM	0	2	11	1	3	3	0	0	0	0	0	0	6	0	10	0	36
8:00 AM	0	5	6	0	4	4	0	0	0	0	0	0	11	0	5	0	35
8:15 AM	0	3	7	0	1	3	0	0	0	0	0	0	11	0	9	0	34
8:30 AM	0	3	4	0	3	5	0	0	0	0	0	0	11	0	4	0	30
8:45 AM	0	1	4	0	3	4	0	0	0	0	0	0	8	0	2	0	22
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES:	0	30	63	1	37	34	0	0	0	0	0	0	124	0	47	0	336
APPROACH \%'s :	0.00\%	31.91\%	67.02\%	1.06\%	52.11\%	47.89\%	0.00\%	0.00\%					72.51\%	0.00\%	27.49\%	0.00\%	
PEAK HR :	07:30 AM - 08:30 AM				$\begin{gathered} 13 \\ 0.650 \end{gathered}$	140.875	$\begin{gathered} 0 \\ 0.000 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 42 \\ 0.750 \end{gathered}$	0 0.000 0.	$\begin{gathered} 28 \\ 0.700 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	TOTAL				
PEAK HR VOL :	0	16	32	1													146
PEAK HR FACTOR :	0.000	0.667	0.727	0.250													
		0.875				0.750											0.890

PM	NORTHBOUND				SOUTHBOUND				EASTBOUND				WESTBOUND				TOTAL
	0$N L$	0NT	$\begin{gathered} 0 \\ \text { NR } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{SL} \\ \hline \end{gathered}$	0ST	$\begin{gathered} 0 \\ \text { SR } \end{gathered}$	$\begin{gathered} 0 \\ \text { SU } \end{gathered}$	$\begin{gathered} 0 \\ \text { EL } \end{gathered}$	ET	$\begin{gathered} 0 \\ \text { ER } \end{gathered}$	$\begin{gathered} 0 \\ \text { EU } \end{gathered}$	$\begin{gathered} 0 \\ \text { WL } \end{gathered}$	$\begin{gathered} 0 \\ \text { WT } \end{gathered}$	$\begin{gathered} 0 \\ \text { WR } \end{gathered}$	$\begin{gathered} 0 \\ \text { WU } \end{gathered}$	
3:00 PM	0	3	6	0	9	3	0	0	0	0	0	0	3	0	2	0	26
3:15 PM	0	3	12	0	1	3	0	0	0	0	0	0	2	0	2	0	23
3:30 PM	0	3	5	0	3	2	0	0	0	0	0	0	7	0	5	0	25
3:45 PM	0	3	8	0	3	2	0	0	0	0	0	0	9	0	3	0	28
4:00 PM	0	2	18	0	6	0	0	0	0	0	0	0	7	0	2	0	35
4:15 PM	0	6	12	0	10	3	0	0	0	0	0	0	6	0	6	0	43
4:30 PM	0	1	9	0	3	3	0	0	0	0	0	0	5	0	5	0	26
4:45 PM	0	4	4	0	7	2	0	0	0	0	0	0	7	0	2	0	26
5:00 PM	0	3	2	0	7	4	0	0	0	0	0	0	3	0	5	0	24
5:15 PM	0	6	6	0	3	3	0	0	0	0	0	0	4	0	8	0	30
5:30 PM	0	2	4	0	4	4	0	0	0	0	0	0	5	0	3	0	22
5:45 PM	0	1	7	0	1	2	0	0	0	0	0	0	8	0	5	0	24
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	
TOTAL VOLUMES :	0	37	93	0	57	31	0	0	0	0	0	0	66	0	48	0	
APPROACH \%'s :	0.00\%	28.46\%	71.54\%	0.00\%	64.77\%	35.23\%	0.00\%	0.00\%					57.89\%	0.00\%	42.11\%	0.00\%	
PEAK HR :	03:45 PM - 04:45 PM				$\begin{gathered} 22 \\ 0.550 \end{gathered}$	8	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} 27 \\ 0.750 \end{gathered}$	0	$\begin{gathered} 16 \\ 0.667 \end{gathered}$	$\begin{gathered} 0 \\ 0.000 \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ 132 \\ 0.767 \end{gathered}$					
PEAK HR VOL :	0	12	47	0													
PEAK HR FACTOR :	0.000	0.500	0.653	0.000		0.667								0.000			
	0.738					0.577											

Iron Mountain Rd \& Keswick Dam Rd

Peak Hour Turning Movement Count

Iron Mountain Rd N/O Bakers Hill Rd/Homestake Rd

Day: Wednesday
Date: 10/23/2019

City: Redding
Project \#: CA19_7385_001

Iron Mountain Rd N/O Bakers Hill Rd/Homestake Rd

Day: Thursday
Date: 10/24/2019

City: Redding
Project \#: CA19_7385_001

Iron Mountain Rd N/O Bakers Hill Rd/Homestake Rd

Day: Tuesday
Date: 10/22/2019

City: Redding
Project \#: CA19_7385_001

VOLUME

Keswick Dam Rd E/O Iron Mountain Rd
Day: Wednesday
Date: 10/23/2019

Day: Thursday
Date: 10/24/2019

City: Redding
Project \#: CA19_7385_002

Day: Tuesday
Date: 10/22/2019

City: Redding
Project \#: CA19_7385_002

Appendix B

Traffic Analysis Reports

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	0	0	57	0	0	72
Future Vol, veh/h	0	0	57	0	0	72
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	4	2	2	17
Mvmt Flow	0	0	60	0	0	76

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	136	60	0	0	60	0
Stage 1	60		-	-	-	-
Stage 2	76	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	857	1005	-	-	1544	-
Stage 1	963	-	-	-	-	-
Stage 2	947	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	857	1005	-	-	1544	-
Mov Cap-2 Maneuver	857	-	-	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	947	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1544	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	r		\uparrow			4
Traffic Vol, veh/h	1	0	57	0	0	71
Future Vol, veh/h	1	0	57	0	0	71
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	5	2	2	16
Mvmt Flow	1	0	61	0	0	76

Intersection													
Int Delay, s/veh	1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			\$			\uparrow			\uparrow		
Traffic Vol, veh/h	0	0	5	4	0	1	2	52	3	4	62	3	
Future Vol, veh/h	0	0	5	4	0	1	2	52	3	4	62	3	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, \%	2	2	100	2	2	100	50	2	2	2	18	67	
Mvmt Flow	0	0	5	4	0	1	2	55	3	4	65	3	

Intersection						
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	43	29	18	33	13	14
Future Vol, veh/h	43	29	18	33	13	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	10	7	2	9	2	14
Mvmt Flow	48	33	20	37	15	16

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	85	39	0	0	57	0
Stage 1	39	-	-	-	-	-
Stage 2	46	-	-	-	-	-
Critical Hdwy	6.5	6.27	-	-	4.12	-
Critical Hdwy Stg 1	5.5	-	-	-	-	-
Critical Hdwy Stg 2	5.5	-	-	-	-	-
Follow-up Hdwy	3.59	3.363	-	-	2.218	-
Pot Cap-1 Maneuver	897	1019	-	-	1547	-
Stage 1	963	-	-	-	-	-
Stage 2	956	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	888	1019	-	-	1547	-
Mov Cap-2 Maneuver	888	-	-	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	946	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.2		0		3.5	
HCM LOS	A					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	936	1547	-
HCM Lane V/C Ratio		-	-	0.086	0.009	-
HCM Control Delay (s)		-	-	9.2	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0	-

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	39	48	70
Average Queue (ft)	5	13	21
95th Queue (ft)	24	36	52
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB
Directions Served	LR
Maximum Queue (ft)	15
Average Queue (ft)	1
95th Queue (ft)	8
Link Distance (ft)	326
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	72	64	10
Average Queue (ft)	7	5	0
95th Queue (ft)	40	33	0
Link Distance (ft)	284	349	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	60	44	4	7
Average Queue (ft)	7	6	0	0
95th Queue (ft)	38	27	3	5
Link Distance (ft)	506	240	636	887
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	76	18
Average Queue (ft)	34	1
95th Queue (ft)	61	7
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Major/Minor	Major1	Major2				
Conflicting Flow All	326	0	-	0	692	140
\quad Stage 1	-	-	-	-	280	-
Stage 2	-	-	-	-	412	-
Critical Hdwy	4.13	-	-	-6.735	6.93	
Critical Hdwy Stg 1	-	-	-	-5.935	-	
Critical Hdwy Stg 2	-	-	-	-5.535	-	
Follow-up Hdwy	2.219	-	-	-3.5855	3.319	
Pot Cap-1 Maneuver	1232	-	-	-	381	883
\quad Stage 1	-	-	-	-	725	-
\quad Stage 2	-	-	-	-	650	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1232	-	-	-	370	883
Mov Cap-2 Maneuver	-	-	-	-	370	-
Stage 1	-	-	-	-704	-	
Stage 2	-	-	-	-	650	-

	EB	WB	SB
Approach			
HCM Control Delay, s	0.8	0	13.2
HCOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1232	-	-	-370	883	
HCM Lane V/C Ratio	0.029	-	-	-0.095	0.024	
HCM Control Delay (s)	8	-	-	-	15.7	9.2
HCM Lane LOS	A	-	-	-	C	A
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.3	0.1

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Hr		F			\nmid
Traffic Vol, veh/h	0	0	72	0	0	59
Future Vol, veh/h	0	0	72	0	0	59
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	7	2	2	6
Mvmt Flow	0	0	83	0	0	68

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	140	63	63	0	-	0	
Stage 1	63	-	-	-	-	-	
Stage 2	77	-		-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-		-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	853	1002	1540	-	-	-	
Stage 1	960	-		-	-	-	
Stage 2	946	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	853	1002	1540	-	-	-	
Mov Cap-2 Maneuver	853	-	-	-	-	-	
Stage 1	960	-	-	-	-	-	
Stage 2	946	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	0		0		0		
HCM LOS	A						
Minor Lane/Major Mvm		NBL	NBT	11	SBT	SBR	
Capacity (veh/h)		1540	-	-	-	-	
HCM Lane V/C Ratio		-	-	-	-	-	
HCM Control Delay (s)		0	-	0	-	-	
HCM Lane LOS		A	-	A	-	-	
HCM 95th \%tile Q(veh		0	-	-	-	-	

Intersection						

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	38	77	24
Average Queue (ft)	8	18	8
95th Queue (ft)	28	49	21
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)			

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream BIk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB	
Directions Served	LR	
Maximum Queue (ft)	33	4
Average Queue (ft)	23	
95th Queue (ft)	326	
Link Distance (ft)		
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	78	67
Average Queue (ft)	18	18
95th Queue (ft)	63	61
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	69	30	24
Average Queue (ft)	15	11	1
95th Queue (ft)	55	35	11
Link Distance (ft)	506	240	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	65	11
Average Queue (ft)	28	0
95th Queue (ft)	54	4
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	312	0	-	0	578	135
Stage 1		-		-	270	
Stage 2		-		-	308	
Critical Hdwy	4.37	-	-	-	6.915	7.275
Critical Hdwy Stg 1	-	-	-	-	6.115	
Critical Hdwy Stg 2	-	-	-	-	5.715	
Follow-up Hdwy	2.371	-	-		69953	. 5375
Pot Cap-1 Maneuver	1150	-	-	-	425	827
Stage 1		-	-	-	704	
Stage 2		-	-	-	696	
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1150	-	-	-	415	827
Mov Cap-2 Maneuver		-	-	-	415	
Stage 1		-	-		688	
Stage 2	-	-	-	-	696	

Approach	EB	WB	SB
HCM Control Delay, s	0.8	0	12
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1150	-	-	-	415
827					
HCM Lane V/C Ratio	0.023	-	-	-0.093	0.049
HCM Control Delay (s)	8.2	-	-	-	14.6
9.6					
HCM Lane LOS	A	-	-	-	B
HCM 95 th \%tile Q(veh)	0.1	-	-	-	0.3
H.	0.2				

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Hr		F			\neq
Traffic Vol, veh/h	0	0	62	0	0	78
Future Vol, veh/h	0	0	62	0	0	78
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	12	2	2	24
Mvmt Flow	0	0	65	0	0	82

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	rin		\uparrow			4
Traffic Vol, veh/h	1	0	62	0	0	77
Future Vol, veh/h	1	0	62	0	0	77
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	13	2	2	24
Mvmt Flow	1	0	66	0	0	82

Intersection													
Int Delay, s/veh	1.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			¢			¢			¢		
Traffic Vol, veh/h	1	0	11	4	0	1	7	52	3	4	62	4	
Future Vol, veh/h	1	0	11	4	0	1	7	52	3	4	62	4	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, \%	2	2	100	2	2	100	86	2	2	2	18	75	
Mvmt Flow	1	0	12	4	0	1	7	55	3	4	65	4	

Intersection						

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	48	74	60
Average Queue (ft)	6	22	19
95th Queue (ft)	27	54	49
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)	0		
Queuing Penalty (veh)	0		

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB
Directions Served	LR
Maximum Queue (ft)	23
Average Queue (ft)	1
95th Queue (ft)	9
Link Distance (ft)	326
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	66	61
Average Queue (ft)	7	5
95th Queue (ft)	38	31
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	72	45	14	4
Average Queue (ft)	19	7	0	0
95th Queue (ft)	62	31	4	3
Link Distance (ft)	506	240	636	887
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	73	11
Average Queue (ft)	35	0
95th Queue (ft)	62	6
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	328	0	-	0	694	140
Stage 1					280	
Stage 2	-				414	
Critical Hdwy	4.235	-	-	-	6.855	6.975
Critical Hdwy Stg 1	-	-	-		6.055	
Critical Hdwy Stg 2	-	-			5.655	
Follow-up Hdwy	2.2855	-			.6615	. 3475
Pot Cap-1 Maneuver	1186	-	-		366	874
Stage 1	-	-	-	-	705	
Stage 2	-	-	-	-	629	
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1186	-	-	-	355	874
Mov Cap-2 Maneuver	-		-		355	
Stage 1		-	-		683	
Stage 2	-	-	-	-	629	

Approach	EB	WB	SB
HCM Control Delay, s	0.8	0	13.7
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1186	-	-	-	355	874
HCM Lane V/C Ratio	0.031	-	-	-0.108	0.026	
HCM Control Delay (s)	8.1	-	-	-	16.4	9.2
HCM Lane LOS	A	-	-	-	C	A
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.4	0.1

Major/Minor	Minor1	Major1		Major2			
Conflicting Flow All	158	86	0	0	86	0	
Stage 1	86	-	-	-	-	-	
Stage 2	72	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-		2.218	-	
Pot Cap-1 Maneuver	833	973	-	-	1510	-	
Stage 1	937	-	-	-	-	-	
Stage 2	951	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	833	973	-	-	1510	-	
Mov Cap-2 Maneuver	833	-	-	-	-	-	
Stage 1	937	-	-	-	-	-	
Stage 2	951	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	0		0		0		
HCM LOS	A						
Minor Lane/Major Mvm		NBT	NBR	1	SBL	SBT	
Capacity (veh/h)		-	-	-	1510	-	
HCM Lane V/C Ratio		-	-	-	-	-	
HCM Control Delay (s)		-	-	0	0	-	
HCM Lane LOS		-	-	A	A	-	
HCM 95th \%tile Q(veh		-	-	-	0	-	

Intersection						
Int Delay, s/veh	4.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	30	16	15	44	23	8
Future Vol, veh/h	30	16	15	44	23	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	- None	-	None	
Storage Length	0	-	-	-	-	-
Ven in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, \%	2	2	7	2	2	24
Mvmt Flow	39	21	19	57	30	10

Intersection						

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	41	70	37
Average Queue (ft)	8	19	7
95th Queue (ft)	30	50	25
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB
Directions Served	LR
Maximum Queue (ft)	38
Average Queue (ft)	3
95th Queue (ft)	18
Link Distance (ft)	326
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	69	79
Average Queue (ft)	19	23
95th Queue (ft)	62	69
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	74	35	11
Average Queue (ft)	21	8	0
95th Queue (ft)	65	31	8
Link Distance (ft)	506	240	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	51	22
Average Queue (ft)	26	1
95th Queue (ft)	48	11
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Hr		F			\neq
Traffic Vol, veh/h	0	0	68	0	0	87
Future Vol, veh/h	0	0	68	0	0	87
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	4	2	2	17
Mvmt Flow	0	0	74	0	0	95

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	169	74	0	0	74	0
Stage 1	74		-	-	-	-
Stage 2	95	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	821	988	-	-	1526	-
Stage 1	949	-	-	-	-	-
Stage 2	929	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	821	988	-	-	1526	-
Mov Cap-2 Maneuver	821	-	-	-	-	-
Stage 1	949	-	-	-	-	-
Stage 2	929	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1526	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	r		\uparrow			4
Traffic Vol, veh/h	1	0	68	0	0	86
Future Vol, veh/h	1	0	68	0	0	86
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	16
Mvmt Flow	1	0	74	0	0	93

Intersection													
Int Delay, s/veh	1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			¢			\uparrow			¢		
Traffic Vol, veh/h	0	0	6	5	0	1	2	62	4	5	75	4	
Future Vol, veh/h	0	0	6	5	0	1	2	62	4	5	75	4	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	100	2	2	100	50	2	2	2	18	67	
Mvmt Flow	0	0	7	5	0	1	2	67	4	5	82	4	

Intersection						

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	43	49	66
Average Queue (ft)	6	17	22
95th Queue (ft)	25	39	53
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB	
Directions Served	LR	
Maximum Queue (ft)	12	
Average Queue (ft)	1	7
95th Queue (ft)	326	
Link Distance (ft)		
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	57	58
Average Queue (ft)	8	6
95th Queue (ft)	39	34
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	69	42	8
Average Queue (ft)	11	6	0
95th Queue (ft)	48	29	6
Link Distance (ft)	506	240	887
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	83	13
Average Queue (ft)	38	0
95th Queue (ft)	65	5
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	399	0	-	0	849	171
Stage 1	-	-		-	342	
Stage 2	-			-	507	
Critical Hdwy	4.13	-		-	6.735	6.93
Critical Hdwy Stg 1	-	-	-		5.935	
Critical Hdwy Stg 2		-	-		5.535	
Follow-up Hdwy	2.219	-	-		. 5855	3.319
Pot Cap-1 Maneuver	1158	-	-	-	304	844
Stage 1	-	-	-	-	674	
Stage 2		-	-	-	586	
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1158	-	-	-	292	844
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-			
Stage 2	-	-	-	-	586	

	EB	WB	SB
Approach			
HCM Control Delay, s	0.8	0	15.8
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1158	-	-	-	292
844					
HCM Lane V/C Ratio	0.038	-	-	-0.149	0.03
HCM Control Delay (s)	8.2	-	-	-	19.5
9.4					
HCM Lane LOS	A	-	-	-	C
HCM 95 th \%tile Q(veh)	0.1	-	-	-	0.5
H.	0.1				

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Hr		F			\neq
Traffic Vol, veh/h	0	0	87	0	0	70
Future Vol, veh/h	0	0	87	0	0	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	7	2	2	6
Mvmt Flow	0	0	100	0	0	80

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	180	100	0	0	100	0
Stage 1	100		-	-	-	-
Stage 2	80	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	810	956	-	-	1493	-
Stage 1	924	-	-	-	-	-
Stage 2	943	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	810	956	-	-	1493	-
Mov Cap-2 Maneuver	810	-	-	-	-	-
Stage 1	924	-	-	-	-	-
Stage 2	943	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1493	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			a	b	
Traffic Vol, veh/h	0	0	0	87	70	0
Future Vol, veh/h	0	0	0	87	70	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	160	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	8	5	2
Mvmt Flow	0	0	0	95	76	0

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	r		\uparrow			4
Traffic Vol, veh/h	1	2	86	1	0	69
Future Vol, veh/h	1	2	86	1	0	69
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	50	4	2	2	4
Mvmt Flow	1	2	93	1	0	75

Intersection						
Int Delay, s/veh	4.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		\uparrow			\uparrow
Traffic Vol, veh/h	36	20	17	53	27	9
Future Vol, veh/h	36	20	17	53	27	9
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, \%	2	2	2	2	2	13
Mvmt Flow	47	26	22	69	35	12

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	139	57	0	0	91	0
Stage 1	57	-	-	-	-	-
Stage 2	82	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	854	1009	-	-	1504	-
Stage 1	966	-	-	-	-	-
Stage 2	941	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	834	1009	-	-	1504	-
Mov Cap-2 Maneuver	834	-	-	-	-	-
Stage 1	966	-	-	-	-	-
Stage 2	919	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.4		0		5.6	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	889	1504	-
HCM Lane V/C Ratio		-	-	0.082	0.023	-
HCM Control Delay (s)		-	-	9.4	7.5	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	WB	SB	SB
Directions Served	L	R	L	R
Maximum Queue (ft)	33	3	74	27
Average Queue (ft)	9	0	21	8
95th Queue (ft)	29	3	48	21
Link Distance (ft)			236	236
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	85	165		
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream BIk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB	
Directions Served	LR	
Maximum Queue (ft)	40	
Average Queue (ft)	3	
95th Queue (ft)	21	
Link Distance (ft)	326	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	69	77
Average Queue (ft)	19	22
95th Queue (ft)	63	69
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	69	34	24
Average Queue (ft)	18	9	1
95th Queue (ft)	58	33	11
Link Distance (ft)	506	240	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	57	27
Average Queue (ft)	28	2
95th Queue (ft)	52	14
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	373	0	-	0	693	162	
Stage 1	-	-	-	-	324	-	
Stage 2	-	-	-	-	369	-	
Critical Hdwy	4.37	-	-	-6.915	7.275		
Critical Hdwy Stg 1	-	-	-	-6.115	-		
Critical Hdwy Stg 2	-	-	-	-5.715	-		
Follow-up Hdwy	2.371	-	-	-3.69953 .5375			
Pot Cap-1 Maneuver	1089	-	-	-	359	793	
\quad Stage 1	-	-	-	-	660	-	
Stage 2	-	-	-	-	651	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1089	-	-	-	349	793	
Mov Cap-2 Maneuver	-	-	-	-	349	-	
Stage 1	-	-	-	-	642	-	
Stage 2	-	-	-	-	651	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.8	0	13.2
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1089	-	-	-	349	793
HCM Lane V/C Ratio	0.028	-	-	-	0.129	0.061
HCM Control Delay (s)	8.4	-	-	-	16.8	9.8
HCM Lane LOS	A	-	-	-	C	A
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.4	0.2

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			4
Traffic Vol, veh/h	0	0	73	0	0	93
Future Vol, veh/h	0	0	73	0	0	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	12	2	2	24
Mvmt Flow	0	0	79	0	0	101

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			a	个	
Traffic Vol, veh/h	0	0	0	73	93	0
Future Vol, veh/h	0	0	0	73	93	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	160	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	2	14	27	2
Mvmt Flow	0	0	0	83	106	0

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	rin		\uparrow			4
Traffic Vol, veh/h	1	0	73	0	0	93
Future Vol, veh/h	1	0	73	0	0	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	13	2	2	24
Mvmt Flow	1	0	79	0	0	101

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			个			\uparrow	
Traffic Vol, veh/h	0	5	0	1	2	0	0	73	0	1	91	0
Future Vol, veh/h	0	5	0	1	2	0	0	73	0	1	91	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, \%	2	100	2	100	100	2	2	13	2	100	29	2
Mvmt Flow	0	6	0	1	2	0	0	84	0	1	105	0

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\&			¢ ${ }^{\text {d }}$	
Traffic Vol, veh/h	1	0	12	5	0	1	7	62	4	5	75	5
Future Vol, veh/h	1	0	12	5	0	1	7	62	4	5	75	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	100	2	100	2	2	100	86	2	2	2	18	75
Mvmt Flow	1	0	13	5	0	1	8	67	4	5	82	5

Intersection						
Int Delay, s/veh	5.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	52	35	22	40	16	18
Future Vol, veh/h	52	35	22	40	16	18
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	10	7	6	9	2	20
Mvmt Flow	58	39	25	45	18	20

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	42	64	60
Average Queue (ft)	7	23	21
95th Queue (ft)	30	56	50
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	62	59
Average Queue (ft)	8	5
95th Queue (ft)	40	30
Link Distance (ft)	284	349
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	81	36	12	4
Average Queue (ft)	19	7	0	0
95th Queue (ft)	66	29	9	3
Link Distance (ft)	506	240	636	887
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	77	14
Average Queue (ft)	38	1
95th Queue (ft)	65	7
Link Distance (ft)	691	458
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection						
Int Delay, s/veh	1.7					
Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{7}$	4	脊	${ }^{7}$	\%	${ }^{\prime}$
Traffic Vol, veh/h	42	384	315	54	43	24
Future Vol, veh/h	42	384	315	54	43	24
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	85	-	-	315	0	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	9	9	2	11	17	5
Mvmt Flow	46	417	342	59	47	26

Major/Minor	Major1	Major2				Minor2		
Conflicting Flow All	401	0	-	0	851	171		
\quad Stage 1	-	-	-	-	342	-		
\quad Stage 2	-	-	-	-	509	-		
Critical Hdwy	4.235	-	-	-	6.855	6.975		
Critical Hdwy Stg 1	-	-	-	-	6.055	-		
Critical Hdwy Stg 2	-	-	-	-5.655	-			
Follow-up Hdwy	2.2855	-	-	-3.66153 .3475				
Pot Cap-1 Maneuver	1113	-	-	-	291	835		
\quad Stage 1	-	-	-	-	655	-		
\quad Stage 2	-	-	-	-	566	-		
Platoon blocked, \%		-	-	-				
Mov Cap-1 Maneuver	1113	-	-	-	279	835		
Mov Cap-2 Maneuver	-	-	-	-	279	-		
Stage 1	-	-	-	-	628	-		
Stage 2	-	-	-	-	566	-		

Approach	EB	WB	SB
HCM Control Delay, s	0.8	0	16.6
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	1113	-	-	-	279	835
HCM Lane V/C Ratio	0.041	-	-	-	0.168	0.031
HCM Control Delay (s)	8.4	-	-	-	20.5	9.5
HCM Lane LOS	A	-	-	-	C	A
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.6	0.1

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	kn		\uparrow			\uparrow
Traffic Vol, veh/h	0	0	90	0	0	74
Future Vol, veh/h	0	0	90	0	0	74
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, $\%$	2	2	11	2	2	13
Mvmt Flow	0	0	103	0	0	85

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	188	103	0	0	103	0
Stage 1	103		-	-	-	-
Stage 2	85	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	801	952	-	-	1489	-
Stage 1	921	-	-	-	-	-
Stage 2	938	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	801	952	-	-	1489	-
Mov Cap-2 Maneuver	801	-	-	-	-	-
Stage 1	921	-	-	-	-	-
Stage 2	938	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1489	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			a	个	
Traffic Vol, veh/h	0	0	0	90	74	0
Future Vol, veh/h	0	0	0	90	74	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	160	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	12	11	2
Mvmt Flow	0	0	0	98	80	0

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NET	NER	SWL	SWT
Lane Configurations	r		\uparrow			4
Traffic Vol, veh/h	1	2	89	1	0	73
Future Vol, veh/h	1	2	89	1	0	73
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	50	8	2	2	12
Mvmt Flow	1	2	97	1	0	79

Intersection						
Int Delay, s/veh	4.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	36	20	18	53	27	10
Future Vol, veh/h	36	20	18	53	27	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	77	77	77	77	77	77
Heavy Vehicles, \%	2	2	7	2	2	24
Mvmt Flow	47	26	23	69	35	13

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	141	58	0	0	92	0
Stage 1	58	-	-	-	-	-
Stage 2	83	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	852	1008	-	-	1503	-
Stage 1	965	-	-	-	-	-
Stage 2	940	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	832	1008	-	-	1503	-
Mov Cap-2 Maneuver	832	-	-	-	-	-
Stage 1	965	-	-	-	-	-
Stage 2	918	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.4		0		5.4	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	887	1503	-
HCM Lane V/C Ratio		-	-	0.082	0.023	-
HCM Control Delay (s)		-	-	9.4	7.5	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection											
Int Delay, s/veh 0											
Movement W	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NER	
Lane Configurations		\%		¢			个		T		
Traffic Vol, veh/h	0	0	0	93	0	0	63	0	0	0	
Future Vol, veh/h	0	0	0	93	0	0	63	0	0	0	
Conflicting Peds, \#/hr		0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Free	Free	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	-	-	None	-	-	None	-	-	
Storage Length		0	-	-	-	-	-	-	0	25	
Veh in Median Storage, \#		-	-	0	-		0	-	0	-	
Grade, \%		-	-	0	-	-	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%		2	2	2	2	2	2	2	2	2	
Mumt Flow	0	0	0	101	0	0	68	0	0	0	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		\mathbf{r}	\uparrow			4
Traffic Vol, veh/h	0	0	50	0	0	60
Future Vol, veh/h	0	0	50	0	0	60
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	54	0	0	65

Intersection: 1: SR 299 (Eureka Way) \& Iron Mountain Rd

Movement	EB	SB	SB
Directions Served	L	L	R
Maximum Queue (ft)	43	72	28
Average Queue (ft)	10	21	9
95th Queue (ft)	32	53	25
Link Distance (ft)		236	236
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	85		
Storage Blk Time (\%)	0		
Queuing Penalty (veh)	0		

Intersection: 2: Iron Mountain Rd \& Middle Creek Road

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 3: Iron Mountain Rd \& CCA South Drvwy

Movement

Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream BIk Time (\%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)

Intersection: 4: Iron Mountain Rd \& Stubbs Ln

Movement	WB	
Directions Served	LR	
Maximum Queue (ft)	32	
Average Queue (ft)	2	
95th Queue (ft)	13	
Link Distance (ft)	326	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 5: Iron Mountain Rd \& Lumber Manufacture (4-Leg) Dvwy

Movement	EB	WB	SB
Directions Served	LTR	LTR	TR
Maximum Queue (ft)	91	78	9
Average Queue (ft)	23	25	0
95th Queue (ft)	70	73	7
Link Distance (ft)	284	349	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 6: Iron Mountain Rd \& Ball Mill Rd

Movement	EB	WB	NB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	92	34	28
Average Queue (ft)	26	9	1
95th Queue (ft)	76	32	15
Link Distance (ft)	506	240	636
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Iron Mountain Rd \& Keswick Dam Rd

Movement	WB	NB	SB
Directions Served	LR	TR	LT
Maximum Queue (ft)	46	4	27
Average Queue (ft)	26	0	3
95th Queue (ft)	48	3	16
Link Distance (ft)	691	723	458
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

[^0]: ${ }^{1}$ Intersection 2 and 3 reported no queues and therefore w asn't included in table.
 ${ }^{2}$ Queue lengths are rounded up to the nearest 5 feet increment.

[^1]: ${ }^{1}$ Percent Time Spent Follow ing
 ${ }^{2}$ For Class II Highw ays, Base Free Flow Speeds range from $45-70 \mathrm{mph}$

[^2]: ${ }^{1}$ Intersection 2 and 3 reported no queues and therefore w asn't included in table.
 ${ }^{2}$ Queue lengths are rounded up to the nearest 5 feet increment.

[^3]: ${ }^{1}$ Percent Time Spent Follow ing
 ${ }^{2}$ For Class II Highw ays, Base Free Flow Speeds range from $45-70 \mathrm{mph}$

[^4]: ${ }^{1}$ Intersection 2 and 3 reported no queues and therefore w asn't included in table.
 ${ }^{2}$ Queue lengths are rounded up to the nearest 5 feet increment.

[^5]: ${ }^{1}$ Percent Time Spent Follow ing
 ${ }^{2}$ For Class II Highw ays, Base Free Flow Speeds range from 45-70 mph

